p-Cresyl sulfate (PCS) is a risk factor of cardiovascular disease in patients with chronic kidney disease. Here we tested whether serum PCS levels were related to the rate and evolution of carotid atherosclerosis in hemodialysis patients and identified a potential mechanism. A total of 200 hemodialysis patients were categorized as with or without carotid atherosclerotic plaque and followed for 5 years. Serum PCS levels were found to be higher in patients with than without carotid atherosclerotic plaque and positively correlated with increased total plaque area during follow-up. Multiple logistic regression and mixed effects model analyses showed that serum PCS levels were independently associated with the incidence and progression of carotid atherosclerotic plaque. PCS induced inflammatory factor and adhesion molecule expression in endothelial cells and macrophages. In addition, PCS triggered monocyte-endothelial cell interaction in vitro and in vivo through increased production of reactive oxygen species. Compared with controls, increase of PCS levels produced by gavage promoted atherogenesis in 5/6-nephrectomized apoE-/- mice; a process attenuated by NADPH oxidase inhibitors. Thus, increased serum PCS levels are associated with the occurrence and progression of carotid atherosclerosis in hemodialysis patients and promote atherogenesis through increased reactive oxygen species production.
Recent studies have reported that subclinical hypothyroidism (SCH) is associated with atherosclerosis (AS). Thyroid hormone is maintained at normal levels in patients with SCH, whereas TSH is increased. However, the pathogenesis of AS in association with SCH is only partially understood. In addition, endothelial dysfunction plays an important role in the development of AS. The purpose of the present research was to study the direct effect of TSH on human umbilical vein endothelial cells (HUVECs). The expression of some genes associated with endothelial dysfunction after treatment with TSH was evaluated by real-time PCR and western blotting respectively. At first, we showed that the TSH receptor (TSHR) is expressed in HUVECs. We also provide evidence indicating that TSH treatment promotes tumor necrosis factor a-induced endothelial cells interactions by upregulating the expression of the adhesion molecules intercellular adhesion molecule-1. Furthermore, the expression of endothelial nitric oxide synthase (eNOS) and prostacyclin (PGI 2 ) was significantly attenuated following treatment with TSH in dose-and time-dependent manner. Conversely, the results indicated that TSH upregulated endothelin-1 (ET1) mRNA and protein expression in HUVECs, similar effects were observed for plasminogen activator inhibitor-1 (PAI1) after treatment with various concentrations of TSH. Taken together, these results demonstrate that elevated TSH can promote endothelial dysfunction by altering gene expression in HUVECs.
It is thought that carbamylated modification plays a crucial role in the development and progression of cardiovascular disease (CVD) in patients with end-stage renal disease (ESRD). However, information on the biological effects of carbamylated high-density lipoprotein (C-HDL) in ESRD is poor. The present study investigated the carbamylation level of HDL in ESRD and the effects of C-HDL on endothelial repair properties. HDL was isolated from healthy control subjects (n = 22) and patients with ESRD (n = 30). The carbamylation level of HDL was detected using ELISA. Isolated C-HDL for use in tissue culture experiments was carbamylated in vitro to a similar extent to that observed in ESRD. Human arterial endothelial cells were treated with C-HDL or native HDL to assess their migration, proliferation, and angiogenesis properties. HDL-associated paraoxonase 1 activity was also determined by spectrophotometry assay. Compared with healthy control subjects, the carbamylation level of HDL in ESRD patients was increased and positively correlated with blood urea concentration. In vitro, C-HDL significantly inhibited migration, angiogenesis, and proliferation in endothelial cells. Mechanistic studies revealed that HDL-associated paraoxonase 1 activity was decreased and negatively correlated with the carbamylation level of HDL in ESRD patients. In addition, C-HDL suppressed the expression of VEGF receptor 2 and scavenger receptor class B type I signaling pathways in endothelial cells. In conclusion, the present study identified a significantly increased carbamylation level of HDL in ESRD. Furthermore, C-HDL inhibited endothelial cell repair functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.