Monocytes in patients with systemic lupus erythematosus (SLE) are hyperstimulatory for T lymphocytes. We previously found that the normal program for expression of a negative costimulatory molecule programmed death ligand-1 (PD-L1) is defective in SLE patients with active disease. Here, we investigated the mechanism for PD-L1 dysregulation on lupus monocytes. We found that PD-L1 expression on cultured SLE monocytes correlated with TNF-α expression. Exogenous TNF-α restored PD-L1 expression on lupus monocytes. Conversely, TGF-β inversely correlated with PD-L1 in SLE and suppressed expression of PD-L1 on healthy monocytes. Therefore, PD-L1 expression in monocytes is regulated by opposing actions of TNF-α and TGF-β. As PD-L1 functions to fine tune lymphocyte activation, dysregulation of cytokines resulting in reduced expression could lead to loss of peripheral T cell tolerance.
We report that polyclonal CD8regs generated in one week ex-vivo with anti-CD3/28 beads and cytokines rapidly developed suppressive activity in vitro sustained by TGF-β. In immunodeficient mice, these CD8regs demonstrated a markedly protective, IL-10 dependent activity against a xeno-GVHD. They expressed IL-2Rα/β, Foxp3, TNFR2, and the negative co-stimulatory receptors CTLA-4, PD-1, PD-L1 and Tim-3. Suppressive activity in vitro correlated better with TNFR2 and PD-L1 than Foxp3. Blocking studies suggested that TNF enhanced PD-L1 expression and the suppressive activity of the CD8regs generated. Unlike other polyclonal CD4 and CD8 Tregs, these CD8regs preferentially targeted allogeneic T cells, but they lacked cytotoxic activity against them even after sensitization. Unlike CD4regs, these CD8regs could produce IL-2 and proliferate while inhibiting target cells. If these CD8regs can persist in foreign hosts without impairing immune surveillance, they could serve as a practical remission-inducing product for the treatment of autoimmune diseases, graft-versus-host disease, and allograft rejection.
Background: Differentiation of systemic juvenile idiopathic arthritis (SJIA) fever from other childhood fevers is often delayed due to the lack of reliable, specific biomarkers. We hypothesized that PD-L1 expression is dysregulated in SJIA monocytes and compared it to other candidate SJIA biomarkers. Methods: This pilot study enrolled children with fever without source and compared PD-L1 expression on myeloid cells to C-reactive protein, erythrocyte sedimentation rate, leukocyte counts, S100A12, S100A8, S100A9, calprotectin, and procalcitonin. Logistic regression models were fit to test SJIA diagnosis with each marker used as an independent predictor. Receiver operating characteristic curves and area under curve were calculated. Gene expression profiling on a subset of samples was performed. results: Twenty subjects (10 active SJIA, 10 febrile non-SJIA) were enrolled. S100 proteins were significantly elevated in SJIA with >80% sensitivity and >90% specificity. PD-L1 expression was significantly lower in SJIA. Other markers were not specific for SJIA. On exploratory gene analysis, 106 genes were significant for SJIA association, and several of these are associated with immune response pathways. conclusion: In this small cohort, S100 proteins were specific diagnostic biomarkers for SJIA in children with fever. Decreased PD-L1 surface expression on circulating myeloid cells in SJIA suggests possible mechanism for loss of peripheral immune regulation.
Systemic juvenile idiopathic arthritis (sJIA) is a systemic inflammatory disease characterized by arthritis, spiking fever and a skin rash that is frequently complicated by macrophage activation syndrome (MAS), a life-threatening disorder. We report a 22-month-old girl with sJIA who developed severe MAS but was successfully treated with corticosteroids, cyclosporin A, and non-steroidal anti-inflammatory drugs by monitoring serum IL-18 levels. IL-18 is an extremely useful cytokine for monitoring the activity of sJIA and MAS, and serum IL-18 can be used as an indicator for the effectiveness of treatment and the decision to discontinue therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.