Vitamin A (VA) is required for normal fetal development and successful pregnancy. Excessive VA intake during pregnancy may lead to adverse maternal and fetal effects. Cytochrome P450 26A1 (cyp26a1), a retinoic acid (RA)-metabolizing enzyme, is involved in VA metabolism. It has been shown that cyp26a1 is expressed in female reproductive tract, especially in uterus. In order to investigate the role of cyp26a1 during pregnancy, we constructed a recombinant plasmid DNA vaccine encoding cyp26a1 protein and immunized mice with the plasmid. Compared to control groups, the pregnancy rate of the cyp26a1 plasmid-immunized mice were significantly decreased (P < 0.01). Further results showed that both cyp26a1 mRNA and protein were specifically induced in the uterus during implantation period and localized in the uterine luminal epithelium. Importantly, the number of implantation sites was also significantly reduced (P < 0.05) after the uterine injection of cyp26a1-specific antisense oligos or anti-cyp26a1 antibody on day 3 of pregnancy. Accordingly, the expression of RA-related cellular retinoic acid binding protein 1 and tissue transglutaminase was markedly increased (P < 0.05) in the uterine luminal epithelium after intrauterine injection treatments. These data demonstrate that uterine cyp26a1 activity is important for the maintenance of pregnancy, especially during the process of blastocyst implantation.
After insemination, a large number of leukocytes migrate into the uterus, which is accompanied by intense inflammation. However, the details of how seminal plasma interacts with the uterus are still not very clear. Here, we present that neutrophils migrate and accumulate around the uterine epithelium following insemination, which is accompanied by an increase in interleukin (IL) 17A levels. Additionally, we find that γδ T cells are the major source of IL-17A, and the seminal plasma could induce the γδ T cells to secret IL-17A. Blocking IL-17A could reduce the number of neutrophils in the uterus and prevent them from migrating to the epithelium by decreasing the chemokines CXCL1, CXCL2 and CXCL5. Blocking IL-17A did not affect the Th1/Th2 balance but actually diminished the inflammation in the uterus by reducing the expression of IL-1β and TNF-α. In summary, we found a new mechanism by which seminal plasma could influence the inflammation in the uterus through the γδ T/IL-17 pathway to regulate the expression of various chemokines and cytokines.
The results show that M and N proteins of SARS-CoV can induce apoptosis of HPF cells. Co-transfection of M and N enhances the induction of apoptosis by M or N alone, which also suggests that the structural proteins of SARS-CoV may play an important role not only in the process of invasion but also in the pathogenetic process in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.