Summary Background Disruption of circadian (daily) timekeeping enhances the risk of metabolic syndrome, obesity, and Type 2 diabetes. While clinical observations have suggested that insulin action is not constant throughout the 24 hour cycle, its magnitude and periodicity have not been assessed. Moreover, when circadian rhythmicity is absent or severely disrupted, it is not known whether insulin action will lock to the peak, nadir or mean of the normal periodicity of insulin action. Results We used hyperinsulinemic-euglycemic clamps to show a bona fide circadian rhythm of insulin action; mice are most resistant to insulin during their daily phase of relative inactivity. Moreover, clock-disrupted Bmal1-knockout mice are locked into the trough of insulin action and lack rhythmicity in insulin action and activity patterns. When rhythmicity is rescued in the Bmal1-knockout mice by expression of the paralogous gene Bmal2, insulin action and activity patterns are restored. When challenged with a high fat diet, arhythmic mice (either Bmal1-knockout mice or wild type mice made arhythmic by exposure to constant light) were obese prone. Adipose tissue explants obtained from high-fat fed mice have their own periodicity that was longer than animals on a chow fed diet. Conclusions This study provides rigorous documentation for a circadian rhythm of insulin action and demonstrates that disturbing the natural rhythmicity of insulin action will disrupt the rhythmic internal environment of insulin sensitive tissue, thereby predisposing the animals to insulin resistance and obesity.
Optogenetic techniques allow intracellular manipulation of Ca++ by illumination of light-absorbing probe molecules such as channelrhodopsins and melanopsins. The consequences of optogenetic stimulation would optimally be recorded by non-invasive optical methods. However, most current optical methods for monitoring Ca++ levels are based on fluorescence excitation that can cause unwanted stimulation of the optogenetic probe and other undesirable effects such as tissue autofluorescence. Luminescence is an alternate optical technology that avoids the problems associated with fluorescence. Using a new bright luciferase, we here develop a genetically encoded Ca++ sensor that is ratiometric by virtue of bioluminescence resonance energy transfer (BRET). This sensor has a large dynamic range and partners optimally with optogenetic probes. Ca++ fluxes that are elicited by brief pulses of light to cultured cells expressing melanopsin and to neurons-expressing channelrhodopsin are quantified and imaged with the BRET Ca++ sensor in darkness, thereby avoiding undesirable consequences of fluorescence irradiation.
Summary Most of the central circadian clock genes in the mouse exist as paralog pairs (Per1/Per2, Cry1/Cry2, Clock/Npas2) that must both be knocked out to confer arhythmicity [1, 2, 3]. The only exception to this pattern is Bmal1/Mop3, the single knockout of which confers arhythmicity despite the presence of its paralog Bmal2/Mop9 [4]. The knockout of Bmal1 also has significant effects on longevity, metabolism, et al. [5, 6]. These results have led to the conclusion that Bmal1 is a singularly essential clock gene and that Bmal2 has a minimal role in the clock system. In contrast, we find that expression of Bmal2 from a constitutively expressed promoter can rescue the clock and metabolic phenotypes of Bmal1-knockout mice, including rhythmic locomotor activity, rhythmic metabolism, low body weight, and enhanced fat deposition. Combined with the data of Bunger and coworkers who reported that knockout of Bmal1 down-regulates Bmal2 [4], we conclude that Bmal1 and Bmal2 form a circadian paralog pair that is functionally redundant, but that in the mouse, Bmal2 is regulated by Bmal1 such that knockout of Bmal1 alone results in a functionally double Bmal1/Bmal2 knockout. Therefore, the role(s) of Bmal2 may be more important than has been appreciated heretofore.
Summary Background The paternal allele of Ube3a is silenced by imprinting in neurons, and Angelman Syndrome (AS) is a disorder arising from a deletion or mutation of the maternal Ube3a allele, which thereby eliminates Ube3a neuronal expression. Sleep disorders such as short sleep duration and increased sleep onset latency are very common in AS. Results We found an unique link between neuronal imprinting of Ube3a and circadian rhythms in two mouse models of AS, including enfeebled circadian activity behavior and slowed molecular rhythms in ex vivo brain tissues. As a consequence of compromised circadian behavior, metabolic homeostasis is also disrupted in AS mice. Unsilencing the paternal Ube3a allele restores functional circadian periodicity in neurons deficient in maternal Ube3a, but does not affect periodicity in peripheral tissues that are not imprinted for uniparental Ube3a expression. The ubiquitin ligase encoded by Ube3a interacts with the central clock components BMAL1 and BMAL2. Moreover, inactivation of Ube3a expression elevates BMAL1 levels in brain regions that control circadian behavior of AS model mice, indicating an important role for Ube3a in modulating BMAL1 turnover. Conclusions Ube3a expression constitutes a direct mechanistic connection between symptoms of a human neurological disorder and the central circadian clock mechanism. The lengthened circadian period leads to delayed phase, which could explain the short sleep duration and increased sleep onset latency of AS subjects. Moreover, we report the pharmacological rescue of an AS phenotype, in this case, altered circadian period. These findings reveal potential treatments for sleep disorders in AS patients.
An extensive literature links circadian irregularities and/or sleep abnormalities to mood disorders. Despite the strong genetic component underlying many mood disorders, however, previous genetic associations between circadian clock gene variants and major depressive disorder (MDD) have been weak. We applied a combined molecular/functional and genetic association approach to circadian gene polymorphisms in sex-stratified populations of control subjects and case subjects suffering from MDD. This approach identified significant sex-dependent associations of common variants of the circadian clock genes hClock, hPer3 and hNpas2 with major depression and demonstrated functional effects of these polymorphisms on the expression or activity of the hCLOCK and hPER3 proteins, respectively. In addition, hCLOCK expression is affected by glucocorticoids, consistent with the sex-dependency of the genetic associations and the modulation of glucocorticoid-mediated stress response, providing a mechanism by which the circadian clock controls outputs that may affect psychiatric disorders. We conclude that genetic polymorphisms in circadian genes (especially hClock and hPer3, where functional assays could be tested) influence risk of developing depression in a sex- and stress-dependent manner. These studies support a genetic connection between circadian disruption and mood disorders, and confirm a key connection between circadian gene variation and major depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.