We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V. Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon derived by Zhijun Qiao.Submitted to: J. Phys. A: Math. Gen.
We consider a family of non-evolutionary partial differential equations, labelled by a single parameter b, all of which admit multi-peakon solutions. For the two special integrable cases, namely the Camassa-Holm and Degasperis-Procesi equations (b = 2 and 3), we explain how their spectral problems have reciprocal links to Lax pairs for negative flows, in the Korteweg-de Vries and Kaup-Kupershmidt hierarchies respectively. An analogous construction is presented in the case of the Sawada-Kotera hierarchy, leading to a new zero-curvature representation for the integrable Vakhnenko equation. We show how the two special peakon equations are isolated via the Wahlquist-Estabrook prolongation algebra method. Using the trivector technique of Olver, we provide a proof of the Jacobi identity for the non-local Hamiltonian structures of the whole peakon family. Within this class of Hamiltonian operators (also labelled by b), we present a uniqueness theorem which picks out the special cases b = 2, 3.
We attempt to propose an algebraic approach to the theory of integrable difference equations. We define the concept of a recursion operator for difference equations and show that it generates an infinite sequence of symmetries and canonical conservation laws for a difference equation. As in the case of partial differential equations, these canonical densities can serve as integrability conditions for difference equations. We obtain the recursion operators for the Viallet equation and all the Adler-Bobenko-Suris equations.
We show that that Bakirov's counterexample which had been checked by computeralgebra methods to order 53 to the conjecture that one nontrivial symmetry of an evolution equation implies in nitely many is indeed a counterexample. To prove this we use the symbolic method of Gel'fand-Dikii and p-adic analysis. W e also formulate a conjecture to the e ect that almost all equations in the family considered by Bakirov h a ve at most nitely many symmetries. This conjecture depends on the solution of a diophantine problem, which w e explicitly state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.