ABSTRACT. Ginsenoside Rh2 (Rh2) is a ginseng derivative used in Chinese traditional medicine. We investigated whether Rh2 can help prevent Alzheimer's disease symptoms and examined underlying mechanisms. We injected Rh2 into tg2576 Alzheimer's disease model mice and looked for behavioral improvement and senile plaque reduction in brain slices. We measured amyloid precursor protein (APP) metabolism species changes, amyloid beta40 and 42 levels and β, γ secretase activity in primary hippocampal neurons. By living cell staining, we detected surface and endocytosed APP. We also measured cholesterol and lipid rafts in primary neurons. Rh2 treatment significantly improved learning and memory performance at 14 months of age; it also reduced brain senile plaques at this age. Based on in vitro experiments, we found that Rh2 treatment increased soluble APPα (sAPPα) levels, increased CTFα/β ratios, and reduced amyloid beta 40 3587©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 13 (2): 3586-3598 (2014) Ginsenoside Rh2 promotes nonamyloidgenic cleavage of APP and 42 concentrations. Surface APP levels dramatically increased. Based on living cell staining, we found that Rh2 inhibited APP endocytosis. Based on lipid removal and reload experiments, we found that Rh2 can modulate APP by reducing cholesterol and lipid raft levels. We concluded that Rh2 improves learning and memory function in Alzheimer's disease model mice, and that this improvement is accomplished by reducing amyloid beta secretion and APP endocytosis, which in turn is achieved by reducing cholesterol and lipid raft concentrations.
The aim of the present study was to investigate the neuroprotective effects of bone marrow-derived endothelial progenitor cell (EPC) transplantation against cerebral ischemia/reperfusion (I/R) injury in rats and to delineate the possible underlying mechanisms. Cerebral I/R injury was established by 2 h of middle cerebral artery occlusion (MCAO) followed by reperfusion for 24 h. EPCs were isolated from bone marrow of the donor rats, grown in conditioned medium, and characterized by flow cytometry analysis of several surface markers. Labeled EPCs (106 cells) were infused into rats at the onset of reperfusion and 12 h after reperfusion via the tail vein. Infarct volume was assessed at 24 h after reperfusion by using triphenyltetrazolium chloride (TTC) staining. The expression of cell apoptosis-related proteins including Bcl-2 and Bax was determined by western blot analysis, and the activity of caspase-3 was also measured. We evaluated the activities of some antioxidative enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), the non-enzymatic scavenger glutathione (GSH) and detected the content of malondialdehyde (MDA) in the ischemic penumbra. Moreover, the expression of nuclear factor-κB (NF-κB) in the ischemic regions of rats was examined by immunohistochemical staining and western blot analysis. The results showed that transplantation of EPCs significantly reduced the cerebral infarct volume, decreased caspase-3 activity, upregulated Bcl-2 expression, and downregulated the expression of Bax and NF-κB. Furthermore, reduced levels of MDA, significantly elevated activities of SOD and GSH as well as GSH-PX were also found in I/R rats transplanted with EPCs. Collectively, our data demonstrated that transplantation of bone marrow-derived EPCs exerts potent neuroprotective functions against cerebral I/R injury in rats, and the protective effects may be associated with its antioxidative and anti-apoptotic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.