Perfect state transfer can be achieved between two marked vertices of graphs like a star graph, a complete graph with self-loops and a complete bipartite graph, and two-dimensional Lattice by means of discrete-time quantum walk. In this paper, we investigate the quality of quantum state transfer between two marked vertices of an unsymmetrical graph like the butterfly network. Our numerical results support the conjecture that the fidelity of state transfer depends on the quantum state to be transferred dynamically. The butterfly network is a typical example studied in networking coding. Therefore, these results can provide a clue to the construction of quantum network coding schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.