Reactive oxygen species (ROS) generated in some non-phagocytic cells are implicated in mitogenic signalling and cancer. Many cancer cells show increased production of ROS, and normal cells exposed to hydrogen peroxide or superoxide show increased proliferation and express growth-related genes. ROS are generated in response to growth factors, and may affect cell growth, for example in vascular smooth-muscle cells. Increased ROS in Ras-transformed fibroblasts correlates with increased mitogenic rate. Here we describe the cloning of mox1, which encodes a homologue of the catalytic subunit of the superoxide-generating NADPH oxidase of phagocytes, gp91phox. mox1 messenger RNA is expressed in colon, prostate, uterus and vascular smooth muscle, but not in peripheral blood leukocytes. In smooth-muscle cells, platelet-derived growth factor induces mox1 mRNA production, while antisense mox1 mRNA decreases superoxide generation and serum-stimulated growth. Overexpression of mox1 in NIH3T3 cells increases superoxide generation and cell growth. Cells expressing mox1 have a transformed appearance, show anchorage-independent growth and produce tumours in athymic mice. These data link ROS production by Mox1 to growth control in non-phagocytic cells.
. When human catalase was expressed in Nox1-expressing cells, H 2O2 concentration decreased, and the cells reverted to a normal appearance, the growth rate normalized, and cells no longer produced tumors in athymic mice. A large number of genes, including many related to cell cycle, growth, and cancer (but unrelated to oxidative stress), were expressed in Nox1-expressing cells, and more than 60% of these returned to normal levels on coexpression of catalase. Thus, H2O2 in low concentrations functions as an intracellular signal that triggers a genetic program related to cell growth.
Carbon dots (CDs) have various attractive properties and potential applications, but there is much less attention paid to their phosphorescent phenomenon and mechanism. Herein, we prepared a kind of highly efficient CD-based phosphorescent material by a subtle design method that incorporated N-doped CDs (NCDs) into composite matrices (the melting recrystallization urea and biuret from the heating urea) by a one-pot heating treatment for the mixture of urea and NCDs. Through systematic investigation, CN bonds on the surface of the NCDs can create new energy level structures, and for the first time, evidence that shows they are the origin of phosphorescence is presented. Composite matrices play a dual role to suppress the vibrational dissipation of long-lived triplets by combining the rigidity of the melting recrystallization urea and hydrogen bonding between biuret and NCDs, which have obvious advantages over a single-component matrix. The results show the obtained materials have an ultralong phosphorescent lifetime of 1.06 s under 280 nm excitation and a high phosphorescent quantum yield of 7% under 360 nm excitation in air, which are the highest values recorded for the CDbased materials. These CD-based room-temperature phosphorescent materials have also shown potential in white light-emitting diodes and data security.
Phosphorescence shows great potential for application in bioimaging and ion detection because of its long-lived luminescence and high signal-to-noise ratio, but establishing phosphorescence emission in aqueous environments remains a challenge. Herein, we present a general design strategy that effectively promotes phosphorescence by utilising water molecules to construct hydrogen-bonded networks between carbon dots (CDs) and cyanuric acid (CA). Interestingly, water molecules not only cause no phosphorescence quenching but also greatly enhance the phosphorescence emission. This enhancement behaviour can be explained by the fact that the highly ordered bound water on the CA particle surface can construct robust bridge-like hydrogen-bonded networks between the CDs and CA, which not only effectively rigidifies the C=O bonds of the CDs but also greatly enhances the rigidity of the entire system. In addition, the CD-CA suspension exhibits a high phosphorescence lifetime (687 ms) and is successfully applied in ion detection based on its visible phosphorescence.
Rho family guanosine triphosphatase (GTPase) 3 (Rnd3), a member of the small Rho GTPase family, has been suggested to regulate cell actin cytoskeleton dynamics, cell migration, and apoptosis through the Rho kinase-dependent signaling pathway. The biological function of Rnd3 in the heart is unknown. The downregulation of small GTPase Rnd3 transcripts was found in patients with end-stage heart failure. The pathological significance of Rnd3 loss in the transition to heart failure remains unexplored. To investigate the functional consequence of Rnd3 downregulation and the associated molecular mechanism, we generated Rnd3+/− haploinsufficient mice to mimic the downregulation of Rnd3 observed in the failing human heart. Rnd3+/− mice were viable; however, the mice developed heart failure after pressure overload by transverse aortic constriction (TAC). Remarkable apoptosis, increased caspase-3 activity, and elevated Rho kinase activity were detected in the Rnd3+/− haploinsufficient animal hearts. Pharmacological inhibition of Rho kinase by fasudil treatment partially improved Rnd3+/− mouse cardiac functions and attenuated myocardial apoptosis. To determine if Rho-associated coiled-coil kinase 1 (ROCK1) was responsible for Rnd3 deficiency-mediated apoptotic cardiomyopathy, we established a double-knockout mouse line, the Rnd3 haploinsufficient mice with ROCK1-null background (Rnd3+/−/ROCK1−/−). Again, genetic deletion of ROCK1 partially but not completely rescued Rnd3 deficiency-mediated heart failure phenotype. These data suggest that downregulation of Rnd3 correlates with cardiac loss of function as in heart failure patients. Animals with Rnd3 haploinsufficiency are predisposed to hemodynamic stress. Hyperactivation of Rho kinase activity is responsible in part for the apoptotic cardiomyopathy development. Further investigation of ROCK1-independent mechanisms in Rnd3-mediated cardiac remodeling should be the focus for future study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.