The primate lentiviral accessory protein Nef downregulates CD4 and major histocompatibility complex class I (MHC-I) from the cell surface via independent endosomal trafficking pathways to promote viral pathogenesis. In addition, Nef antagonizes a novel restriction factor, SERINC5 (Ser5), to increase viral infectivity. To explore the molecular mechanism of Ser5 antagonism by Nef, we determined how Nef affects Ser5 expression and intracellular trafficking in comparison to CD4 and MHC-I. We confirm that Nef excludes Ser5 from human immunodeficiency virus type 1 (HIV-1) virions by downregulating its cell surface expression via similar functional motifs required for CD4 downregulation. We find that Nef decreases both Ser5 and CD4 expression at steady-state levels, which are rescued by NHCl or bafilomycin A1 treatment. Nef binding to Ser5 was detected in living cells using a bimolecular fluorescence complementation assay, where Nef membrane association is required for interaction. In addition, Nef triggers rapid Ser5 internalization via receptor-mediated endocytosis and relocalizes Ser5 to Rab5 early, Rab7 late, and Rab11 recycling endosomes. Manipulation of AP-2, Rab5, Rab7, and Rab11 expression levels affects the Nef-dependent Ser5 and CD4 downregulation. Moreover, although Nef does not promote Ser5 polyubiquitination, Ser5 downregulation relies on the ubiquitination pathway, and both K48- and K63-specific ubiquitin linkages are required for the downregulation. Finally, Nef promotes Ser5 colocalization with LAMP1, which is enhanced by bafilomycin A1 treatment, suggesting that Ser5 is targeted to lysosomes for destruction. We conclude that Nef uses a similar mechanism to downregulate Ser5 and CD4, which sorts Ser5 into a point-of-no-return degradative pathway to counteract its restriction. Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) express an accessory protein called Nef to promote viral pathogenesis. Nef drives immune escape through downregulation of CD4 and MHC-I from the host cell surface. Recently, Nef was reported to counteract a novel host restriction factor, Ser5, to increase viral infectivity. Nef downregulates cell surface Ser5, thus preventing its incorporation into virus particles, resulting in disruption of its antiviral activity. Here, we report mechanistic studies of Nef-mediated Ser5 downregulation in comparison to CD4 and MHC-I. We demonstrate that Nef binds directly to Ser5 in living cells and that Nef-Ser5 interaction requires Nef association with the plasma membrane. Subsequently, Nef internalizes Ser5 from the plasma membrane via receptor-mediated endocytosis, and targets ubiquitinated Ser5 to endosomes and lysosomes for destruction. Collectively, these results provide new insights into our ongoing understanding of the Nef-Ser5 arms race in HIV-1 infection.
Membrane-associated RING-CH-type 8 (MARCH8) strongly blocks human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) incorporation into virions by downregulating its cell surface expression, but the mechanism is still unclear. We now report that MARCH8 also blocks the Ebola virus (EBOV) glycoprotein (GP) incorporation via surface downregulation. To understand how these viral fusion proteins are downregulated, we investigated the effects of MARCH8 on EBOV GP maturation and externalization via the conventional secretion pathway. MARCH8 interacted with EBOV GP and furin when detected by immunoprecipitation and retained the GP/furin complex in the Golgi when their location was tracked by a bimolecular fluorescence complementation (BiFC) assay. MARCH8 did not reduce the GP expression or affect the GP modification by high-mannose N-glycans in the endoplasmic reticulum (ER), but it inhibited the formation of complex N-glycans on the GP in the Golgi. Additionally, the GP O-glycosylation and furin-mediated proteolytic cleavage were also inhibited. Moreover, we identified a novel furin cleavage site on EBOV GP and found that only those fully glycosylated GPs were processed by furin and incorporated into virions. Furthermore, the GP shedding and secretion were all blocked by MARCH8. MARCH8 also blocked the furin-mediated cleavage of HIV-1 Env (gp160) and the highly pathogenic avian influenza virus H5N1 hemagglutinin (HA). We conclude that MARCH8 has a very broad antiviral activity by prohibiting different viral fusion proteins from glycosylation and proteolytic cleavage in the Golgi, which inhibits their transport from the Golgi to the plasma membrane and incorporation into virions. IMPORTANCE Enveloped viruses express three classes of fusion proteins that are required for their entry into host cells via mediating virus and cell membrane fusion. Class I fusion proteins are produced from influenza viruses, retroviruses, Ebola viruses, and coronaviruses. They are first synthesized as a type I transmembrane polypeptide precursor that is subsequently glycosylated and oligomerized. Most of these precursors are cleaved en route to the plasma membrane by a cellular protease furin in the late secretory pathway, generating the trimeric N-terminal receptor-binding and C-terminal fusion subunits. Here, we show that a cellular protein, MARCH8, specifically inhibits the furin-mediated cleavage of EBOV GP, HIV-1 Env, and H5N1 HA. Further analyses uncovered that MARCH8 blocked the EBOV GP glycosylation in the Golgi and inhibited its transport from the Golgi to the plasma membrane. Thus, MARCH8 has a very broad antiviral activity by specifically inactivating different viral fusion proteins.
During initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis. Pseudomonas aeruginosa has evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The type III secretion system (T3SS) and motility are associated with acute infections, while biofilm formation and the type VI secretion system (T6SS) are associated with chronic persistence. To identify novel regulatory genes required for pathogenesis, we screened a P. aeruginosa transposon (Tn) insertion library and found suhB to be an essential gene for the T3SS gene expression. The expression of suhB was upregulated in a mouse acute lung infection model, and loss of suhB resulted in avirulence. Suppression of T3SS gene expression in the suhB mutant is linked to a defective translation of the T3SS master regulator, ExsA. Further studies demonstrated that suhB mutation led to the upregulation of GacA and its downstream small RNAs, RsmY and RsmZ, triggering T6SS expression and biofilm formation while inhibiting the T3SS. Our results demonstrate that an in vivo-inducible gene, suhB, reciprocally regulates genes associated with acute and chronic infections and plays an essential role in the pathogenesis of P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.