Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. These were evaluated for antimicrobial activity against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. The ZnO QDs were utilized as a powder, bound in a polystyrene film (ZnO-PS), or suspended in a polyvinylprolidone gel (ZnO-PVP). Bacteria cultures were inoculated into culture media or liquid egg white (LEW) and incubated at 22• C. The inhibitory efficacies of ZnO QDs against 3 pathogens were concentration dependent and also related to type of application. The ZnO-PVP (3.2 mg ZnO/mL) treatment resulted in 5.3 log reduction of L. monocytogenes and 6.0 log reduction of E. coli O157:H7 in growth media after 48 h incubation, as compared to the controls. Listeria cells in the LEW control increased from 3.8 to 7.2 log CFU/mL during 8 d incubation, while the cells in the samples treated with 1.12 and 0.28 mg ZnO/mL were reduced to 1.4 and 3.0 log CFU/mL, respectively. After 8 d incubation, the cell populations of Salmonella in LEW in the presence of 1.12 and 0.28 mg ZnO/mL were reduced by 6.1 and 4.1 log CFU/mL over that of controls, respectively. ZnO powder and ZnO-PVP showed significant antimicrobial activities against all 3 pathogens in growth media and LEW. ZnO-PVP coating had less inhibitory effect than the direct addition of ZnO-PVP. No antimicrobial activities of ZnO-PS film were observed. This study suggested that the application of ZnO nanoparticles in food systems may be effective at inhibiting certain pathogens.
Summary Innovative strategies are needed to combat drug resistance associated with methicillin-resistant Staphylococcus aureus (MRSA). Here, we investigate the potential of wall teichoic acid (WTA) biosynthesis inhibitors as combination agents to restore β-lactam efficacy against MRSA. Performing a whole cell pathway-based screen we identified a series of WTA inhibitors (WTAIs) targeting the WTA transporter protein, TarG. Whole genome sequencing of WTAI resistant isolates across two methicillin-resistant Staphylococci spp. revealed TarG as their common target, as well as a broad assortment of drug resistant bypass mutants mapping to earlier steps of WTA biosynthesis. Extensive in vitro microbiological analysis and animal infection studies provide strong genetic and pharmacological evidence of the potential effectiveness of WTAIs as anti-MRSA β-lactam combination agents. This work also highlights the emerging role of whole genome sequencing in antibiotic mode-of-action and resistance studies.
The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with β-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum β-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant staphylococci.
bQDMRK was a phase III clinical trial of raltegravir given once daily (QD) (800-mg dose) versus twice daily (BID) (400 mg per dose), each in combination with once-daily coformulated tenofovir-emtricitabine, in treatment-naive HIV-infected patients. Pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic (PK/PD) analyses were conducted using a 2-step approach: individual non-model-based PK parameters from observed sparse concentration data were determined, followed by statistical analysis of potential relationships between PK and efficacy response parameters after 48 weeks of treatment. Sparse PK sampling was performed for all patients (QD, n ؍ 380; BID, n ؍ 384); selected sites performed an intensive PK evaluation at week 4 (QD, n ؍ 22; BID, n ؍ 20). In the intensive PK subgroup, daily exposures (area under the concentration-time curve from 0 to 24 h [AUC 0 -24 ]) were similar between the two regimens, but patients on 800 mg QD experienced ϳ4-fold-higher maximum drug concentration in plasma (C max ) values and ϳ6-fold-lower trough drug concentration (C trough ) values than those on 400 mg BID. Geometric mean (GM) C trough values were similarly lower in the sparse PK analysis. With BID dosing, there was no indication of any significant PK/PD association over the range of tested PK parameters. With QD dosing, C trough values correlated with the likelihood of virologic response. Failure to achieve an HIV RNA level of <50 copies/ml appeared predominantly at high baseline HIV RNA levels in both treatment arms and was associated with lower values of GM C trough in the 800-mg-QD arm, though other possible drivers of efficacy, such as time above a threshold concentration, could not be evaluated due to the sparse sampling scheme. Together, these findings emphasize the importance of the shape of the plasma concentration-versus-time curve for longterm efficacy.
Phytotoxic aluminum (Al) is a limiting factor for crop production on acid soils. The molecular mechanism, however, underlying Al toxicity and responses in plants is still not well understood. We report here the characterization of comparative proteome of aluminum-stress-responsive proteins in a known Al-resistant soybean cultivar, Baxi 10 (BX10). To investigate time-dependent responses, 1-week-old soybean seedlings were exposed to 50 microM AlCl3 for 24, 48 and 72 h, and total proteins extracted from roots were separated by two-dimensional electrophoresis. More than 1200 root proteins of the soybean BX10 seedling were reproducibly resolved on the gels. A total of 39 differentially expressed spots in abundance were identified by mass spectrometry, with 21 upregulated, 13 newly induced and 5 downregulated. The heat shock protein, glutathione S-transferase, chalcone-related synthetase, GTP-binding protein and ABC transporter ATP-binding protein were previously detected at the transcriptional or translational level in other plants. Other proteins, identified in this study, are new Al-induced proteins. Soybean BX10 roots under aluminum stress could be characterized by the cellular activities involved in stress/defense, signal transduction, transport, protein folding, gene regulation, and primary metabolisms, which are critical for plant survival under Al toxicity. This present study expands our understanding of differentially expressed proteins associated with aluminum stress on soybean BX10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.