BackgroundCurrent diagnostic methods for Schistosoma japonicum infection are insensitive for low-density infections. Therefore, a new diagnostic assay based on recombinase polymerase amplification (RPA) technology was established and assessed for field applification.MethodsThe S.japonicum RPA assay was developed to target highly repetitive retrotransposon SjR2 gene of S japonicum, and its sensitivity and specificity were assessed by serial dilution of S. japonicum genomic DNA and other related worm genomic DNA respectively. The RPA diagnostic validity was first evaluated in 60 fecal samples from healthy people and patients, and then compared with other diagnostic tests in 200 high-risk individuals living in endemic areas.ResultsThe real time RPA assay could detect 0.9 fg S. japonicum DNA within 15 min and distinguish S. japonicum from other worms. The validity analysis of RPA for the detection of S. japonicum in stool samples from 30 S. japonicum-infected patients and 30 healthy persons indicated 100% sensitivity and specificity. When testing 200 fecal or serum samples from a high-risk population, the percentage sensitivity of RPA was 100%, whereas that of indirect hemagglutination assay (IHA) and enzyme-linked immunosorbent assay (ELISA) were 80.3% and 85.2% respectively. In addition, the RPA presented better consistency with the stool-based tests than IHA and ELISA. Overall, the RPA was superior to other detection methods with respect to detection time, sensitivity, and convenience.ConclusionsThis is the first time we applied the RPA technology to the field evaluation of S. japonicum infection. And the results suggest that RPA-based assays can be used as a promising point-of-care test for the diagnosis of schistosomiasis.
ABSTRACT. The human breast cancer-associated gene (BCA3) was first discovered in breast and prostate cancer cells lines. In vivo studies have shown that BCA3 is mainly expressed in breast tumor cells and not in normal breast and prostate tissues. To date, 3 splice variants of BCA3 have been reported: a double-absent variant lacking exon 3 and exon 5 (BCA3-1), an exon 3-absent variant (BCA3-2), and full-length BCA3. In this study, we investigated whether a novel BCA3 splice variant exists that lacks only the exon 5-encoding sequence. BCA3 variant splices were subcloned and sequenced using reverse transcription-polymerase chain reaction. The preliminary biological functions of the splices were identified using confocal microscopy and a luciferase assay. The absence of exon 3 and exon 5 influenced the subcellular localization of BCA3 and nuclear factor kappa B (NF-kB)-dependent gene expression. Exon 3 and exon 5 of BCA3 may function together to provide a nuclear localization signal or transport sequence to enter the nucleus, and exon 3 may contain specific sequence(s) or domain(s) that influence the NF-κB signal cascade. The discovery of 10649 ©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 13 (4): 10648-10656 (2014) Novel BCA3 splice novel BCA3 splicing indicates a new cancer research area, which may increase the understanding of cancer generation and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.