Objectives To evaluate at which sensitivity digital breast tomosynthesis (DBT) would become cost-effective compared to digital mammography (DM) in a population breast cancer screening program, given a constant estimate of specificity. Methods In a microsimulation model, the cost-effectiveness of biennial screening for women aged 50–75 was simulated for three scenarios: DBT for women with dense breasts and DM for women with fatty breasts (scenario 1), DBT for the whole population (scenario 2) or maintaining DM screening (reference). For DM, sensitivity was varied depending on breast density from 65 to 87%, and for DBT from 65 to 100%. The specificity was set at 96.5% for both DM and DBT. Direct medical costs were considered, including screening, biopsy and treatment costs. Scenarios were considered to be cost-effective if the incremental cost-effectiveness ratio (ICER) was below €20,000 per life year gain (LYG). Results For both scenarios, the ICER was more favourable at increasing DBT sensitivity. Compared with DM screening, 0.8–10.2% more LYGs were found when DBT sensitivity was at least 75% for scenario 1, and 4.7–18.7% when DBT sensitivity was at least 80% for scenario 2. At €96 per DBT, scenario 1 was cost-effective at a DBT sensitivity of at least 90%, and at least 95% for scenario 2. At €80 per DBT, these values decreased to 80% and 90%, respectively. Conclusion DBT is more likely to be a cost-effective alternative to mammography in women with dense breasts. Whether DBT could be cost-effective in a general population highly depends on DBT costs. Key Points • DBT could be a cost-effective screening modality for women with dense breasts when its sensitivity is at least 90% at a maximum cost per screen of €96. • DBT has the potential to be cost-effective for screening all women when sensitivity is at least 90% at a maximum cost per screen of €80. • Whether DBT could be used as an alternative to mammography for screening all women is highly dependent on the cost of DBT per screen.
Introduction Magnetic resonance imaging (MRI) has shown the potential to improve the screening effectiveness among women with dense breasts. The introduction of fast abbreviated protocols (AP) makes MRI more feasible to be used in a general population. We aimed to investigate the cost-effectiveness of AP-MRI in women with dense breasts (heterogeneously/extremely dense) in a population-based screening program. Methods A previously validated model (SiMRiSc) was applied, with parameters updated for women with dense breasts. Breast density was assumed to decrease with increased age. The base scenarios included six biennial AP-MRI strategies, with biennial mammography from age 50–74 as reference. Fourteen alternative scenarios were performed by varying screening interval (triennial and quadrennial) and by applying a combined strategy of mammography and AP-MRI. A 3% discount rate for both costs and life years gained (LYG) was applied. Model robustness was evaluated using univariate and probabilistic sensitivity analyses. Results The six biennial AP-MRI strategies ranged from 132 to 562 LYG per 10,000 women, where more frequent application of AP-MRI was related to higher LYG. The optimal strategy was biennial AP-MRI screening from age 50–65 for only women with extremely dense breasts, producing an incremental cost-effectiveness ratio of € 18,201/LYG. At a threshold of € 20,000/LYG, the probability that the optimal strategy was cost-effective was 79%. Conclusion Population-based biennial breast cancer screening with AP-MRI from age 50–65 for women with extremely dense breasts might be a cost-effective alternative to mammography, but is not an option for women with heterogeneously dense breasts.
BackgroundBreast cancer (BC) screening can be performed in a screening program (BCSP) or in opportunistic screening. The existing reviews on the determinants of non-participation depend on self-reported data which may be biased. Furthermore, no distinction was made between the probably different determinants of both screening strategies.ObjectiveTo find the determinants of non-participation in BCSP by means of a meta-analysis.MethodsPubMed, Embase, and Web of Science were searched for observational studies which quantified factors associated with non-participation in BCSP in a general population. Studies on opportunistic screening and studies using self-reported data were excluded. A random-effect model was used to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). Potential sources of heterogeneity were explored by stratification of the results.ResultsTwenty-nine studies with in a total of 20,361,756 women were included. Low income (OR: 1.20, 95% CI: 1.10–1.30), low education (OR: 1.18, 95% CI: 1.05–1.32), living far from an assigned screening unit (OR: 1.15, 95% CI: 1.07–1.24), being immigrant (OR: 2.64, 95% CI: 2.48–2.82), and having a male family doctor (OR: 1.43, 95% CI: 1.20–1.61) was associated with higher non-participation in screening. Reminders sent to non-attenders and estimations of ORs (adjusted or not) partly explained substantial heterogeneity.ConclusionIn this meta-analysis excluding studies on the non-participation in opportunistic screening, or with self-reported data on non-participation, the well-known determinants for non-participation are still significant, but less strong. This analysis only supports the relevance of meta-analysis of studies with registered non-participation in a BCSP.Systematic Review RegistrationPROSPERO, CRD42020154016.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.