This study investigated the application of the borehole laser scanning technology (BLST) method in the detection of both dry and water-filled karst caves. In order to solve the problem of excessive laser attenuation during the detection, we designed a test for the characteristics of multiwavelength laser attenuation in water-filled karst caves and studied the influence exerted by various factors, including different wavelengths, different laser power levels, different suspended media, and effect of turbidity on the attenuation coefficient. During the test, we discovered the existence of a “blue-green window” with low turbidity and a “near infrared window” with high turbidity in karst cave water environments. Based on the general survey results of drilling and comprehensive geophysical prospecting, a quantitative method using targeted drilling was proposed to detect the spatial morphology of karst caves in complex environments. We also investigated the effects of complex environmental factors such as suspended media and high turbidity on the laser detection distance and accuracy in karst caves, and established a quantitative matching model of laser wavelengths, laser power, and complex environmental parameters. Based on this, we obtained the best acquisition mode for detecting lasers in different karst development environments. A high-precision, three-dimensional visualized model of a real karst cave was established to quantitatively obtain the characteristic parameters, such as accurate position, three-dimensional shape, space volume, and cave filling type, which was applied to the detection of karst caves along the Jinan subway line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.