In order to solve the intelligent evaluation of English writing, this paper proposes a method based on the English semantic neural network algorithm. This paper first briefly analyzes the research background of the English semantic analysis system, then expounds on the relevant technologies of the English distance similarity algorithm, semantic analysis intelligent algorithm structure, word analysis algorithm, sentence part of speech analysis algorithm, sentence semantic analysis algorithm, and neural network algorithm, and finally expounds the database and method implementation of the English semantic analysis system, so as to provide guarantee for the design of the English semantic analysis system. The experimental results show that the recognition accuracy of the BRF network for English characters can reach 96.35%, which is 7.79% higher than that of the BP network; the AUC of the BRF network reaches 0.89, which is closer to 1 compared with 0.72 of the BP network. The test results are in good agreement with the antinoise curve test results of the figure. It is proved that the English semantic neural network algorithm can effectively improve the accuracy of English translation and further improve the efficiency of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.