Page 2874, Acknowledgments, lines 1 and 2: "We thank the members of the University of Wisconsin genomics team for expert technical assistance" should read "We thank the members of the University of Wisconsin genomics team for expert technical assistance, especially Sean Phillips and Nicholas Hermersmann whose contributions were outstanding."
Hantavirus, a rodent-borne zoonotic pathogen, has a global distribution with 200,000 human infections diagnosed annually. In recent decades, repeated outbreaks of hantavirus infections have been reported in Eurasia and America. These outbreaks have led to public concern and an interest in understanding the underlying biological mechanisms. Here, we propose a climate-animalHantaan virus (HTNV) infection model to address this issue, using a unique dataset spanning a 54-y period . This dataset comes from Central China, a focal point for natural HTNV infection, and includes both field surveillance and an epidemiological record. We reveal that the 8-y cycle of HTNV outbreaks is driven by the confluence of the cyclic dynamics of striped field mouse (Apodemus agrarius) populations and climate variability, at both seasonal and interannual cycles. Two climatic variables play key roles in the ecology of the HTNV system: temperature and rainfall. These variables account for the dynamics in the host reservoir system and markedly affect both the rate of transmission and the potential risk of outbreaks. Our results suggest that outbreaks of HTNV infection occur only when climatic conditions are favorable for both rodent population growth and virus transmission. These findings improve our understanding of how climate drives the periodic reemergence of zoonotic disease outbreaks over long timescales.Hantaan virus | spillover to humans | wildlife reservoir | time-series data | climate change
BackgroundIncreased risks for hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus have been observed since 2005, in Xi’an, China. Despite increased vigilance and preparedness, HFRS outbreaks in 2010, 2011, and 2012 were larger than ever, with a total of 3,938 confirmed HFRS cases and 88 deaths in 2010 and 2011.Methods and FindingsData on HFRS cases and weather were collected monthly from 2005 to 2012, along with active rodent monitoring. Wavelet analyses were performed to assess the temporal relationship between HFRS incidence, rodent density and climatic factors over the study period. Results showed that HFRS cases correlated to rodent density, rainfall, and temperature with 2, 3 and 4-month lags, respectively. Using a Bayesian time-series Poisson adjusted model, we fitted the HFRS outbreaks among humans for risk assessment in Xi’an. The best models included seasonality, autocorrelation, rodent density 2 months previously, and rainfall 2 to 3 months previously. Our models well reflected the epidemic characteristics by one step ahead prediction, out-of-sample.ConclusionsIn addition to a strong seasonal pattern, HFRS incidence was correlated with rodent density and rainfall, indicating that they potentially drive the HFRS outbreaks. Future work should aim to determine the mechanism underlying the seasonal pattern and autocorrelation. However, this model can be useful in risk management to provide early warning of potential outbreaks of this disease.
Liver fibrosis is a common pathologic stage of the development of liver failure. It has showed that exosomes loaded with therapeutic circRNAs can be manufactured in bulk by exosome secreted cells in vitro , thus enabling personalized treatment. This study aimed to investigate the role of exosome-based delivery of circDIDO1 in liver fibrosis. Levels of genes and proteins were examined by qRT-PCR and Western blot. Cell proliferation, apoptosis, and cell cycle were analyzed by using cell counting kit-8 (CCK-8) assay, EdU assay, and flow cytometry, respectively. The binding between circDIDO1 and miR-141-3p was confirmed by dual-luciferase reporter, RNA pull-down and RIP assays. Exosomes were isolated by ultracentrifugation, and qualified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot. CircDIDO1 overexpression or miR-141-3p inhibition suppressed the proliferation, reduced pro-fibrotic markers, and induced apoptosis as well as cell cycle arrest in hepatic stellate cells (HSCs) by blocking PTEN/AKT pathway. Mechanistically, circDIDO1 acted as an endogenous sponge for miR-141-3p, further rescue experiments showed that circDIDO1 suppressed HSC activation by targeting miR-141-3p. Extracellular circDIDO1 could be incorporated into exosomes isolated from mesenchymal stem cells (MSCs), and transmitted to HSCs to restrain HSC activation. Clinically, low levels of serum circDIDO1 in exosome were correlated with liver failure, and serum exosomal circDIDO1 had a well diagnostic value for liver fibrosis in liver failure patients. Transfer of circDIDO1 mediated by MSC-isolated exosomes suppressed HSC activation through the miR-141-3p/PTEN/AKT pathway, gaining a new insight into the prevention of liver fibrosis in liver failure patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.