Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
The enhanced performance of carbon nanotubes (CNTs) over carbon black as a catalyst support and the outstanding catalytic activities of one-dimensional (1D) Pt nanostructures endow them big potential for applications in fuel cells. However, the research has been mainly focused on the materials, and a combination of both 1D Pt nanostructures and CNTs to fabricate practical high power performance fuel cell electrodes still remains a challenge. In this work, we demonstrate catalyst electrodes from Pt nanorods grown on aligned nitrogen doped CNTs for proton exchange membrane fuel cell (PEMFC) applications. Short Pt nanorods are grown on CNTs deposited directly on 16 cm 2 carbon paper gas diffusion layers (GDLs) via plasma enhanced chemical vapour deposition (PECVD) and nitrided using active screen plasma (ASP) treatment, which are directly employed as cathodes for H2/air PEMFCs. The thin open catalyst layer effectively enhances mass transfer performance and, with a less than half of the Pt loading, 1.23 fold power density is achieved as compared with that from commercial Pt/C catalysts. A better durability is also confirmed which can be attributed to the good structure stability of nanorods and the enhancement effects from the N-CNT support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.