The dopaminergic system plays a pivotal role in the central nervous system via its five diverse receptors (D1-D5). Dysfunction of dopaminergic system is implicated in many neuropsychological diseases, including attention deficit hyperactivity disorder (ADHD), a common mental disorder that prevalent in childhood. Understanding the relationship of five different dopamine (DA) receptors with ADHD will help us to elucidate different roles of these receptors and to develop therapeutic approaches of ADHD. This review summarized the ongoing research of DA receptor genes in ADHD pathogenesis and gathered the past published data with meta-analysis and revealed the high risk of DRD5, DRD2, and DRD4 polymorphisms in ADHD.
The entorhinal cortex (EC) is one of the most vulnerable brain regions that is attacked during the early stage of Alzheimer's disease (AD). Here, we report that the synaptic terminals of pyramidal neurons in the EC layer II (ECII PN ) directly innervate CA1 parvalbumin (PV) neurons (CA1 PV ) and are selectively degenerated in AD mice, which exhibit amyloid-β plaques similar to those observed in AD patients. A loss of ECII PN -CA1 PV synapses disables the excitatory and inhibitory balance in the CA1 circuit and impairs spatial learning and memory. Optogenetic activation of ECII PN using a theta burst paradigm rescues ECII PN -CA1 PV synaptic defects and intercepts the decline in spatial learning and memory. These data reveal a novel mechanism of memory loss in AD mice via the selective degeneration of the ECII PN -CA1 PV pathway.
ObjectiveTo assess whether pre-pregnancy body mass index (BMI) modify the relationship between gestational weight gain (GWG) and child birth weight (specifically, presence or absence of low birth weight (LBW) or presence of absence of macrosomia), and estimates of the relative risk of macrosomia and LBW based on pre-pregnancy BMI were controlled in Wuhan, China.MethodsFrom June 30, 2011 to June 30, 2013. All data was collected and available from the perinatal health care system. Logistic regression models were used to estimate the independent association among pregnancy weight gain, LBW, normal birth weight, and macrosomia within different pre-pregnancy BMI groups. We built different logistic models for the 2009 Institute of Medicine (IOM) Guidelines and Chinese-recommended GWG which was made from this sample. The Chinese-recommended GWG was derived from the quartile values (25th-75th percentiles) of weight gain at the time of delivery in the subjects which comprised our sample.ResultsFor LBW children, using the recommended weight gain of the IOM and Chinese women as a reference, the OR for a pregnancy weight gain below recommendations resulted in a positive relationship for lean and normal weight women, but not for overweight and obese women. For macrosomia, considering the IOM’s recommended weight gain as a reference, the OR magnitude for pregnancy weight gain above recommendations resulted in a positive correlation for all women. The OR for a pregnancy weight gain below recommendations resulted in a negative relationship for normal BMI and lean women, but not for overweight and obese women based on the IOM recommendations, significant based on the recommended pregnancy weight gain for Chinese women. Of normal weight children, 56.6% were above the GWG based on IOM recommendations, but 26.97% of normal weight children were above the GWG based on Chinese recommendations.ConclusionsA GWG above IOM recommendations might not be helpful for Chinese women. We need unified criteria to classify adult BMI and to expand the sample size to improve representation and to elucidate the relationship between GWG and related outcomes for developing a Chinese GWG recommendation.
BackgroundNeural Tube Defects (NTDs) are among the most prevalent and most severe congenital malformations worldwide. Polymorphisms in key genes involving the folate pathway have been reported to be associated with the risk of NTDs. However, the results from these published studies are conflicting. We surveyed the literature (1996–2011) and performed a comprehensive meta-analysis to provide empirical evidence on the association.Methods and FindingsWe investigated the effects of 5 genetic variants from 47 study populations, for a total of 85 case-control comparisons MTHFR C677T (42 studies; 4374 cases, 7232 controls), MTHFR A1298C (22 studies; 2602 cases, 4070 controls), MTR A2756G (9 studies; 843 cases, 1006 controls), MTRR A66G (8 studies; 703 cases, 1572 controls), and RFC-1 A80G (4 studies; 1107 cases, 1585 controls). We found a convincing evidence of dominant effects of MTHFR C677T (OR 1.23; 95%CI 1.07–1.42) and suggestive evidence of RFC-1 A80G (OR 1.55; 95%CI 1.24–1.92). However, we found no significant effects of MTHFR A1298C, MTR A2756G, MTRR A66G in risk of NTDs in dominant, recessive or in allelic models.ConclusionsOur meta-analysis strongly suggested a significant association of the variant MTHFR C677T and a suggestive association of RFC-1 A80G with increased risk of NTDs. However, other variants involved in folate pathway do not demonstrate any evidence for a significant marginal association on susceptibility to NTDs.
Background and Purpose Acute lung injury (ALI) is a severe illness with a high rate of mortality. Maresin 1 (MaR1) was recently reported to regulate inflammatory responses. We used a LPS‐induced ALI model to determine whether MaR1 can mitigate lung injury. Experimental Approach Male BALB/c mice were injected, intratracheally, with either LPS (3 mg·kg−1) or normal saline (1.5 mL·kg−1). After this, normal saline, a low dose of MaR1 (0.1 ng per mouse) or a high dose of MaR1 (1 ng per mouse) was given i.v. Lung injury was evaluated by detecting arterial blood gas, pathohistological examination, pulmonary oedema, inflammatory cell infiltration, inflammatory cytokines in the bronchoalveolar lavage fluid and neutrophil–platelet interactions. Key Results The high dose of MaR1 significantly inhibited LPS‐induced ALI by restoring oxygenation, attenuating pulmonary oedema and mitigating pathohistological changes. A combination of elisa and immunohistochemistry showed that high‐dose MaR1 attenuated LPS‐induced increases in pro‐inflammatory cytokines (TNF‐α, IL‐1β and IL‐6), chemokines [keratinocyte chemokine, monocyte chemoattractant protein‐5, macrophage inflammatory protein (MIP)‐1α and MIP‐1γ], pulmonary myeloperoxidase activity and neutrophil infiltration in the lung tissues. Consistent with these observations, flow cytometry and Western blotting indicated that MaR1 down‐regulated LPS‐induced neutrophil adhesions and suppressed the expression of intercellular adhesion molecule (ICAM)‐1, P‐selection and CD24. Conclusions and Implications High‐dose MaR1 mitigated LPS‐induced lung injury in mice by inhibiting neutrophil adhesions and decreasing the levels of pro‐inflammatory cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.