Astaxanthin is widely used in food, aquaculture, cosmetics, and pharmaceuticals due to its strong antioxidant activity and coloring ability, but its production from Phaffia rhodozyma remains the main challenge due to the high fermentation cost and low content of carotenoid. In this study, the production of carotenoids from food waste (FW) by a P. rhodozyma mutant was investigated. P. rhodozyma mutant screened by UV mutagenesis and flow cytometry could stably produce high carotenoids at 25°C, with carotenoid production (32.9 mg/L) and content (6.7 mg/g), respectively, increasing by 31.6% and 32.3% compared with 25 mg/L and 5.1 mg/g of wild strain. Interestingly, the carotenoid production reached 192.6 mg/L by feeding wet FW, which was 21% higher than batch culture. The 373 g vacuum freeze‐dried products were obtained from the fermentation of 1 kg FW by P. rhodozyma, which contained 784 mg carotenoids and 111 mg astaxanthin. The protein, total amino acids, and essential amino acids content of the fermentation products were 36.6%, 40.5%, and 18.2% (w/w), respectively, and lysine‐added fermentation products had the potential of high‐quality protein feed source. This study provides insights for the high‐throughput screening of mutants, astaxanthin production, and the development of the feed potential of FW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.