Asthma is the most common chronic disease and is characterized by airway remodeling and chronic inflammation. Increasingly, studies have found that the activation and M1 phenotypic transformation of macrophages play important roles in asthma progress, including airway remodeling. However, the reversal of M1 macrophages to the M2 phenotype has been shown to attenuate airway remodeling. Exosomes are nano-sized extracellular vesicles derived from endosomes; they play direct roles in governing physiological and pathological conditions by the intracellular transfer of bioactive cargo, such as proteins, enzymes, nucleic acids (microRNA [miRNA], mRNA, DNA), and metabolites. However, transfer mechanisms are unclear. To uncover potential therapeutic mechanisms, we constructed an ovalbumin-induced asthma mouse model and lipopolysaccharide-induced RAW264.7 macrophages cells. Highthroughput sequencing showed that mmu_circ_0001359 was downregulated in asthmatic mice when compared with normal mice. Adipose-derived stem cell (ADSC)-exosome treatment suppressed inflammatory cytokine expression by the conversion of M1 macrophages to the M2 phenotype, under lipopolysaccharide-induced conditions. Exosomes from mmu_circ_0001359 overexpression in ADSCs increased therapeutic effects, in terms of cytokine expression, when compared with wild-type exosomes. Luciferase reporter assays confirmed that exosomes from mmu_circ_0001359-modified ADSCs attenuated airway remodeling by enhancing FoxO1 signalingmediated M2-like macrophage activation, via sponging miR-183-5p. In conclusion, mmu_circ_0001359-enriched exosomes attenuated airway remodeling by promoting M2-like macrophages.
Background The severe rigid deformity patients with pulmonary dysfunction could not tolerate complicated corrective surgery. Preoperative traction are used to reduce the curve magnitude and improve the pulmonary function before surgery, including halo-gravity traction (HGT) and halo-pelvic traction (HPT). The present study aimed to retrospectively compare the radiographic, pulmonary and clinical outcomes of preoperative HGT and HPT in severe rigid spinal deformity with respiratory dysfunction. Methods 81 cases of severe rigid kyphoscoliosis treated with preoperative traction prior to corrective surgery for spinal deformity between 2016 and 2019 were retrospectively reviewed. Two patient groups were compared, HPT group (N = 30) and HGT group (N = 51). Patient demographics, coronal and sagittal Cobb angles and correction rates, pulmonary function, traction time, osteotomy grade, and postoperative neurological complications were recorded for all cases. Results The coronal Cobb angle was corrected from 140.67 ± 2.63 to a mean of 120.17 ± 2.93° in the HGT group, and from 132.32 ± 4.96 to 87.59 ± 3.01° in the HPT group (mean corrections 15.33 ± 1.53 vs. 34.86 ± 3.11 %) (P = 0.001). The mean major sagittal curve decreased from 134.28 ± 3.77 to 113.03 ± 4.57° in the HGT group and from 129.60 ± 8.45 to 65.61 ± 7.86° in the HPT group (P < 0.001); the mean percentage corrections were 16.50 ± 2.13 and 44.09 ± 9.78 % (P < 0.001). A significant difference in the pulmonary function test results was apparent between the two groups; the mean improvements in the FVC% of the HGT and HPT groups were 6.76 ± 1.85 and 15.6 ± 3.47 % (P = 0.024). The HPT group tended to exhibit more FEV% improvement than the HGT group, but the difference was not significant (5.15 ± 2.27 vs. 11.76 ± 2.22 %, P = 0.91). Conclusions Patients with severe rigid kyphoscoliosis who underwent preoperative HPT exhibited better radiographic correction of the deformity, and pulmonary function, and required fewer osteotomies compared to the HGT group. Thus, HPT may be useful for severe rigid spinal deformity patients with pulmonary dysfunction.
Dexmedetomidine (Dex), a highly selective α2-adrenergic receptor (α2AR) agonist, has an anti-inflammatory property and can alleviate pulmonary edema in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the mechanism is still unclear. In this study, we attempted to investigate the effect of Dex on alveolar epithelial sodium channel (ENaC) in the modulation of alveolar fluid clearance (AFC) and the underlying mechanism. Lipopolysaccharide (LPS) was used to induce acute lung injury (ALI) in rats and alveolar epithelial cell injury in A549 cells. In vivo, Dex markedly reduced pulmonary edema induced by LPS through promoting AFC, prevented LPS-induced downregulation of α-, β-, and γ-ENaC expression, attenuated inflammatory cell infiltration in lung tissue, reduced the concentrations of TNF-α, IL-1β, and IL-6, and increased concentrations of IL-10 in bronchoalveolar lavage fluid (BALF). In A549 cells stimulated with LPS, Dex attenuated LPS-mediated cell injury and the downregulation of α-, β-, and γ-ENaC expression. However, all of these effects were blocked by the PI3K inhibitor LY294002, suggesting that the protective role of Dex is PI3K-dependent. Additionally, Dex increased the expression of phosphorylated Akt and reduced the expression of Nedd4-2, while LY294002 reversed the effect of Dex in vivo and in vitro. Furthermore, insulin-like growth factor (IGF)-1, a PI3K agonists, promoted the expression of phosphorylated Akt and reduced the expression of Nedd4-2 in LPS-stimulated A549 cells, indicating that Dex worked through PI3K, and Akt and Nedd4-2 are downstream of PI3K. In conclusion, Dex alleviates pulmonary edema by suppressing inflammatory response in LPS-induced ALI, and the mechanism is partly related to the upregulation of ENaC expression via the PI3K/Akt/Nedd4-2 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.