Large financial institutions such as Bank of America handle hundreds of thousands of wire transactions per day. Although most transactions are legitimate, these institutions have legal and financial obligations in discovering those that are suspicious. With the methods of fraudulent activities ever changing, searching on predefined patterns is often insufficient in detecting previously undiscovered methods. In this paper, we present a set of coordinated visualizations based on identifying specific keywords within the wire transactions. The different views used in our system depict relationships among keywords and accounts over time. Furthermore, we introduce a search-by-example technique which extracts accounts that show similar transaction patterns. In collaboration with the Anti-Money Laundering division at Bank of America, we demonstrate that using our tool, investigators are able to detect accounts and transactions that exhibit suspicious behaviors.
We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.
Data abstraction techniques are widely used in multiresolution visualization systems to reduce visual clutter and facilitate analysis from overview to detail. However, analysts are usually unaware of how well the abstracted data represent the original dataset, which can impact the reliability of results gleaned from the abstractions. In this paper, we define two data abstraction quality measures for computing the degree to which the abstraction conveys the original dataset: the Histogram Difference Measure and the Nearest Neighbor Measure. They have been integrated within XmdvTool, a public-domain multiresolution visualization system for multivariate data analysis that supports sampling as well as clustering to simplify data. Several interactive operations are provided, including adjusting the data abstraction level, changing selected regions, and setting the acceptable data abstraction quality level. Conducting these operations, analysts can select an optimal data abstraction level. Also, analysts can compare different abstraction methods using the measures to see how well relative data density and outliers are maintained, and then select an abstraction method that meets the requirement of their analytic tasks.
Insight Externalization (IE) refers to the process of capturing and recording the semantics of insights in decision making and problem solving. To reduce human effort, Automated Insight Externalization (AIE) is desired. Most existing IE approaches achieve automation by capturing events (e.g., clicks and key presses) or actions (e.g., panning and zooming). In this paper, we propose a novel AIE approach named Click2Annotate. It allows semi-automatic insight annotation that captures low-level analytics task results (e.g., clusters and outliers), which have higher semantic richness and abstraction levels than actions and events. Click2Annotate has two significant benefits. First, it reduces human effort required in IE and generates annotations easy to understand. Second, the rich semantic information encoded in the annotations enables various insight management activities, such as insight browsing and insight retrieval. We present a formal user study that proved this first benefit. We also illustrate the second benefit by presenting the novel insight management activities we developed based on Click2Annotate, namely scented insight browsing and faceted insight search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.