A series of mononuclear and dinuclear cyclometalated platinum(II) 6-phenyl-4-(9,9-dihexylfluoren-2-yl)-2,2'-bipyridine complexes (F-1-F-5) were synthesized and their photophysical properties were systematically investigated. All complexes exhibit strong (1)pi,pi* absorption bands in the UV region, and a broad, structureless charge transfer band in the visible region. The charge-transfer band is broadened and red-shifted for F-3-F-5 compared to those for F-1 and F-2 because of the electron-donating acetylide ligand and the involvement of the ligand-to-ligand charge transfer character. The molar extinction coefficients for the dinuclear complex F-5 are much higher than those for the mononuclear complexes F-1-F-4, indicating the electronic coupling through the bridge ligand. All complexes are emissive in solution at room temperature and in glassy matrix at 77 K. When excited at the charge transfer absorption band, the complexes exhibit a long-lived red/orange emission around 600 nm, which is attributed to a triplet metal-to-ligand charge transfer/intraligand charge transfer emission ((3)MLCT/(3)ILCT). For emission at 77 K, the emitting state is tentatively assigned as (3)MLCT for F-2-F-4, and (3)MLCT/(3)pi,pi* for F-1 and F-5 taking into account the emission energy, the shape of the spectrum, the lifetime, and the thermally induced Stokes shift. F-1-F-4 exhibit broad triplet transient difference absorption in the visible to the near-IR region, with a lifetime comparable to those measured from the decay of the (3)MLCT/(3)ILCT emission. Therefore, F-1-F-4 give rise to a strong reverse saturable absorption for ns laser pulses at 532 nm. Z-scan experiments were carried out at 532 nm using both ns and ps laser pulses, and the experimental data was fitted by a five-band model to extract the singlet and triplet excited-state absorption cross sections. The degree of reverse saturable absorption follows this trend: F-1 = F-2 > F-3 > F-4 > F-5, which is mainly determined by the ratio of the triplet excited-state absorption cross-section to that of the ground-state and the triplet excited-state quantum yield. Comparison of the photophysics of F-1, F-2, and F-3 to those of their corresponding Pt complexes without the fluorenyl substituent discovers that F-1-F-3 exhibit larger molar extinction coefficients for their low-energy charge transfer absorption band, longer triplet excited-state lifetimes, higher emission quantum yields, and increased ratios of the excited-state absorption cross-section to that of the ground-state.
Two platinum 6-phenyl-4-(9,9-dihexylfluoren-2-yl)-2,2'-bipyridine complexes (4 and 5) with phenothiazinyl acetylide ligand were synthesized and characterized. Their UV-vis absorption and emission characteristics in solution and in Langmuir-Blodgett (LB) film were systematically investigated. The triplet transient difference absorption and nonlinear absorption properties were also studied for these complexes. Both complexes exhibit a broad metal-to-ligand charge transfer/intraligand charge transfer/ligand-to-ligand charge transfer ((1)MLCT/(1)ILCT/(1)LLCT) absorption band between 400 and 500 nm and a (3)MLCT/(3)ILCT/(3)pi,pi* emission band at approximately 594 nm at room temperature, which blue shifts at 77 K. Both UV-vis absorption and emission spectra show negative solvatochromic effect. The triplet excited-state lifetime at room temperature for complex 4 is approximately 1.2 micros, which is longer than that for complex 5 (approximately 600 ns). The emission quantum yield of complex 4 in toluene is 0.18 and 0.053 for complex 5. Both of the complexes also exhibit broad and moderately strong triplet transient absorption from the near-UV to the near-IR spectral region. However, 5 exhibits stronger reverse-saturable absorption than complex 4 does at 532 nm for nanosecond laser pulses. This is attributed to the weaker ground-state absorption but stronger triplet excited-state absorption at 532 nm for 5 than for 4, which leads to a larger ratio of excited-state absorption cross section to ground-state absorption for 5 than 4. In addition, LB films of 4 and 5 were prepared and characterized by AFM technique. The UV-vis absorption and emission spectra of the LB films of 4 and 5 were also investigated and compared with those obtained in solution.
A study on the dynamics and structures of the excited states of 2,2′,4,4′,6,6′-hexanitrostilbene shows equilibrium between vibrationally hot S1 (S*1) and S1 states with lifetimes of 0.8 and 6 ps, respectively.
A combination of the advanced chemometrics method with quantum mechanics calculation was for the first time applied to explore a facile yet efficient analysis strategy to thoroughly resolve femtosecond transient absorption spectroscopy of ortho-nitroaniline (ONA), served as a model compound of important nitroaromatics and explosives. The result revealed that the ONA molecule is primarily excited to S3 excited state from the ground state and then ultrafast relaxes to S2 state. The internal conversion from S2 to S1 occurs within 0.9 ps. One intermediate state S* was identified in the intersystem crossing (ISC) process, which is different from the specific upper triplet receiver state proposed in some other nitroaromatics systems. The S1 state decays to the S* one within 6.4 ps and then intersystem crossing to the lowest triplet state within 19.6 ps. T1 was estimated to have a lifetime up to 2 ns. The relatively long S* state and very long-lived T1 one should play a vital role as precursors to various nitroaromatic and explosive photoproducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.