Despite the clinical successes fostered by immune checkpoint inhibitors, mechanisms underlying PD-1 upregulation in tumor-infiltrating T cells remain an enigma. Here, we show that tumor-repopulating cells (TRCs) drive PD-1 upregulation in CD8 T cells through a transcellular kynurenine (Kyn)-aryl hydrocarbon receptor (AhR) pathway. Interferon-γ produced by CD8 T cells stimulates release of high levels of Kyn produced by TRCs, which is transferred into adjacent CD8 T cells via the transporters SLC7A8 and PAT4. Kyn induces and activates AhR and thereby upregulates PD-1 expression. This Kyn-AhR pathway is confirmed in both tumor-bearing mice and cancer patients and its blockade enhances antitumor adoptive T cell therapy efficacy. Thus, we uncovered a mechanism of PD-1 upregulation with potential tumor immunotherapeutic applications.
Dendritic cells (DC) are potent antigen-presenting cells that initiate and regulate T-cell responses. In this study, the numbers and functional cytokine secretions of plasmacytoid and myeloid DC (pDC and mDC, respectively) in peripheral blood from young and elderly subjects were compared. Overall, pDC numbers in peripheral blood were lower in healthy elderly compared with healthy young subjects (p = 0.016). In response to influenza virus stimulation, isolated pDC from healthy elderly subjects secreted less interferon (IFN)–α compared with those from healthy young subjects. The decline in IFN-α secretion was associated with a reduced proportion of pDC that expressed Toll-like receptor–7 or Toll-like receptor-9. In contrast, there was little difference in the numbers and cytokine secretion function between healthy young and healthy elderly subjects (p = 0.82). However, in peripheral blood from frail elderly subjects, the numbers of mDC were severely depleted as compared with either healthy young or elderly subjects (p = 0.014 and 0.007, respectively). Thus, aging was associated with the numerical and functional decline in pDC, but not mDC, in healthy young versus elderly subject group comparisons, while declining health in the elderly can profoundly impact mDC negatively. Because of the importance of pDC for antiviral responses, the age-related changes in pDC likely contribute to the impaired immune response to viral infections in elderly persons, especially when combined with the mDC dysfunction occurring in those with compromised health.
MicroRNAs (miRNA) are ∼21 nucleotide-long non-coding small RNAs, which function as post-transcriptional regulators in eukaryotes. miRNAs play essential roles in regulating plant growth and development. In recent years, research into the mechanism and consequences of miRNA action has made great progress. With whole genome sequence available in such plants as Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Glycine max, etc., it is desirable to develop a plant miRNA database through the integration of large amounts of information about publicly deposited miRNA data. The plant miRNA database (PMRD) integrates available plant miRNA data deposited in public databases, gleaned from the recent literature, and data generated in-house. This database contains sequence information, secondary structure, target genes, expression profiles and a genome browser. In total, there are 8433 miRNAs collected from 121 plant species in PMRD, including model plants and major crops such as Arabidopsis, rice, wheat, soybean, maize, sorghum, barley, etc. For Arabidopsis, rice, poplar, soybean, cotton, medicago and maize, we included the possible target genes for each miRNA with a predicted interaction site in the database. Furthermore, we provided miRNA expression profiles in the PMRD, including our local rice oxidative stress related microarray data (LC Sciences miRPlants_10.1) and the recently published microarray data for poplar, Arabidopsis, tomato, maize and rice. The PMRD database was constructed by open source technology utilizing a user-friendly web interface, and multiple search tools. The PMRD is freely available at http://bioinformatics.cau.edu.cn/PMRD. We expect PMRD to be a useful tool for scientists in the miRNA field in order to study the function of miRNAs and their target genes, especially in model plants and major crops.
The objective of this study was to analyze the changes in the type 1 T cell response, including the CD4+ Th1 and CD8+ T cell responses, to influenza in the elderly compared with those in young adults. PBMC activated ex vivo with influenza virus exhibited an age-related decline in type 1 T cell response, shown by the decline in the frequency of IFN-γ-secreting memory T cells specific for influenza (IFN-γ+ ISMT) using ELISPOT or intracellular cytokine staining. The reduced frequency of IFN-γ+ ISMT was accompanied by a reduced level of IFN-γ secretion per cell in elderly subjects. Tetramer staining, combined with IFN-γ ELISPOT, indicated that the decline in IFN-γ+, influenza M1-peptide-specific T cells was not due to attrition of the T cell repertoire, but, rather, to the functional loss of ISMT with age. In addition, the decline in type 1 T cell response was not due to an increase in Th2 response or defects in APCs from the elderly. The expansion of influenza-specific CD8+ T cells in CTL cultures was reduced in the elderly. Compared with young subjects, frail elderly subjects also exhibited a blunted and somewhat delayed type 1 T cell response to influenza vaccination, which correlated positively with the reduced IgG1 subtype and the total Ab response. Taken together, these data demonstrate that there is a decline in the type 1 T cell response to influenza with age that may help explain the age-related decline in vaccine efficacy and the increases in influenza morbidity and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.