Based on the fundamental equations of piezoelasticity of quasicrystals (QCs), with the symmetry operations of point groups, the plane piezoelasticity theory of onedimensional (1D) QCs with all point groups is investigated systematically. The governing equations of the piezoelasticity problem for 1D QCs including monoclinic QCs, orthorhombic QCs, tetragonal QCs, and hexagonal QCs are deduced rigorously. The general solutions of the piezoelasticity problem for these QCs are derived by the operator method and the complex variable function method. As an application, an antiplane crack problem is further considered by the semi-inverse method, and the closed-form solutions of the phonon, phason, and electric fields near the crack tip are obtained. The path-independent integral derived from the conservation integral equals the energy release rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.