Long noncoding RNA (lncRNA) plays a crucial part in all kinds of life activities, especially in myogenesis. SMARCD3 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 3) is a member of the SWI/SNF protein complex and was reported to be required for cell proliferation and myoblast differentiation. In this study, we identified a new lncRNA named SMARCD3-OT1 (SMARCD3 overlapping lncRNA), which strongly regulated the development of myogenesis by improving the expression of SMARCD3X4 (SMARCD3 transcripts 4). We overexpressed and knockdown the expression of SMARCD3-OT1 and SMARCD3X4 to investigate their function on myoblast proliferation and differentiation. Cell experiments proved that SMARCD3-OT1 and SMARCD3X4 promoted myoblast proliferation through the CDKN1A pathway and improved differentiation of differentiated myoblasts through the MYOD pathway. Moreover, they upregulated the fast-twitch fiber-related genes and downregulated the slow-twitch fiber-related genes, which indicated that they facilitated the slow-twitch fiber to transform into the fast-twitch fiber. The animals’ experiments supported the results above, demonstrating that SMARCD3-OT1 could induce muscle hypertrophy and fast-twitch fiber transformation. In conclusion, SMARCD3-OT1 can improve the expression of SMARCD3X4, thus inducing muscle hypertrophy. In addition, SMARCD3-OT1 can facilitate slow-twitch fibers to transform into fast-twitch fibers.
Poultry plays an important role in the meat consumer market and is significant to further understanding the potential mechanism of muscle development in the broiler. Bone marrow-derived mesenchymal stem cells (BM-MSCs) can provide critical insight into muscle development due to their multi-lineage differentiation potential. To our knowledge, chicken BM-MSCs demonstrate limited myogenic differentiation potential under the treatment with dexamethasone (DXMS) and hydrocortisone (HC). 5-azacytidine (5-Aza), a DNA demethylating agent, which has been widely used in the myogenic differentiation of BM-MSCs in other species. There is no previous report that applies 5-Aza to myogenic-induced differentiation of chicken BM-MSCs. In this study, we evaluated the myogenic determination and differentiation effect of BM-MSCs under different inductive agents. BM-MSCs showed better differentiation potential under the 5-Aza-treatment. Transcriptome sequence analysis identified 2402 differentially expressed DEGs including 28 muscle-related genes after 5-Aza-treatment. The DEGs were significantly enriched in Gene Ontology database terms, including in the cell plasma membrane, molecular binding, and cell cycle and differentiation. KEGG pathway analysis revealed that DEGs were enriched in myogenic differentiation-associated pathways containing the PI3K-Akt signaling pathway, the TGF-β signaling pathway, Arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy, which suggested that BM-MSCs differentiated into a muscle-like phenotype under 5-Aza-treatment. Although BM-MSCs have not formed myotubes in our study, it is worthy of further study. In summary, our study lays the foundation for constructing a myogenic determination and differentiation model in chicken BM-MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.