Energy band engineering is of fundamental importance in nanoelectronics. Compared to chemical approaches such as doping and surface functionalization, electrical and optical methods provide greater flexibility that enables continuous, reversible, and in situ band tuning on electronic devices of various kinds. In this report, we demonstrate highly effective band modulation of MoTe2 field-effect transistors through the combination of electrostatic gating and ultraviolet light illumination. The scheme can achieve reversible doping modulation from deep n-type to deep p-type with ultrafast switching speed. The treatment also enables noticeable improvement in field-effect mobility by roughly 30 and 2 times for holes and electrons, respectively. The doping scheme also provides good spatial selectivity and allows the building of a photo diode on a single MoTe2 flake with excellent photo detection and photovoltaic performances. The findings provide an effective and generic doping approach for a wide variety of 2D materials.
High tibial osteotomy becomes increasingly important in the treatment of cartilage damage or osteoarthritis of the medial compartment with concurrent varus deformity. HTO produces a postoperative valgus limb alignment with shifting the load-bearing axis of the lower limb laterally. However, maximizing procedural success and postoperative knee function still possess many difficulties. The key to improve the postoperative satisfaction and long-term survival is the understanding of the vital biomechanics of HTO in essence. This review article discussed the alignment principles, surgical technique, and fixation plate of HTO as well as the postoperative gait, musculoskeletal dynamics, and contact mechanics of the knee joint. We aimed to highlight the recent findings and progresses on the biomechanics of HTO. The biomechanical studies on HTO are still insufficient in the areas of gait analysis, joint kinematics, and joint contact mechanics. Combining musculoskeletal dynamics modelling and finite element analysis will help comprehensively understand in vivo patient-specific biomechanics after HTO.
Due to the weak screening effect, the concentration and type of charge carriers in 2D semiconductor heterostructures can be effectively tuned by electrostatic gating, enabling us to realize different types of heterojunctions in a single device. Such 'type tunable' properties are useful for designing novel electrical or optoelectrical devices. Here, we demonstrate a 'type tunable' heterojunction device construct with two pieces of ambipolar 2D semiconductors: WSe2 and black phosphorus (BP). This heterojunction could be tuned to either the p-p junction or n-n junction by gate modulation. The p-p junction shows a large current rectification ratio while the n-n junction shows a negligible current rectification ratio, indicating a large valence band offset and a small conduction band offset at the WSe2/BP interface. In the optoelectrical measurements, we found the amplitude and even the polarity of photocurrent could be modulated by electrostatic gating. Our study could further enhance the understanding of designing devices based on these 'type tunable' van der Waals heterojunctions. Moreover, the properties of the WSe2/BP interface were also experimentally identified through the electrical and optoelectrical measurements in our study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.