Modular optimization of metal-organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO with high efficiency under visible-light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron-hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long-lived electrons for the reduction of CO molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO , which is equivalent to a 3.13-fold improvement in CO evolution rate (200.6 μmol g h ) and a 5.93-fold enhancement in CH generation rate (36.67 μmol g h ) compared to the parent MOF.
The alkoxyl radical is an essential and prevalent reactive intermediate for chemical and biological studies. Here we report the first donor-acceptor complex-enabled alkoxyl radical generation under metal-free reaction conditions induced by visible light. Hantzsch ester forms the key donor-acceptor complex with N-alkoxyl derivatives, which is elucidated by a series of spectrometry and mechanistic experiments. Selective C(sp )-C(sp ) bond cleavage and allylation/alkenylation is demonstrated for the first time using this photocatalyst-free approach with linear primary, secondary, and tertiary alkoxyl radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.