Head smut is a systemic disease in maize caused by the soil-borne fungus Sporisorium reilianum that poses a grave threat to maize production worldwide. A major head smut quantitative resistance locus, qHSR1, has been detected on maize chromosome bin2.09. Here we report the map-based cloning of qHSR1 and the molecular mechanism of qHSR1-mediated resistance. Sequential fine mapping and transgenic complementation demonstrated that ZmWAK is the gene within qHSR1 conferring quantitative resistance to maize head smut. ZmWAK spans the plasma membrane, potentially serving as a receptor-like kinase to perceive and transduce extracellular signals. ZmWAK was highly expressed in the mesocotyl of seedlings where it arrested biotrophic growth of the endophytic S. reilianum. Impaired expression in the mesocotyl compromised ZmWAK-mediated resistance. Deletion of the ZmWAK locus appears to have occurred after domestication and spread among maize germplasm, and the ZmWAK kinase domain underwent functional constraints during maize evolution.
The concentrations of Bacillus thuringensis (Bt) toxin released from root exudation of Bt cotton were measured by an enzyme-linked immunosorbent assay (ELISA), and its impacts on the numbers of culturable functional bacteria in the rhizosphere were determined by cultivation. No Bt toxin was found in the rhizosphere of non-Bt cotton (SHIYUAN321), but varying levels of Bt toxin were present in the rhizosphere of two Bt cotton varieties (NuCOTN99 B and SGK321) during the entire growth period. The levels of Bt toxin in the rhizosphere of NuCOTN99 B were significantly higher (p<0.05) than those of SGK321 within all sampling dates except on June 17th in the whole growth season. Significant differences (p<0.05) were found in the numbers of the three functional bacteria between SHIYUAN321 and NuCOTN99 B within each sampling day from May 27th to October 27th. No significant differences were found in the numbers of functional bacteria among three cultivars after growth season. Fortification of pure Bt toxin into rhizospheric soil did not result in significant changes in the numbers of culturable functional bacteria, except the nitrogen-fixing bacteria when the concentration of Bt toxin was higher than 500 ng/g. The results indicated that Bt toxin was not the direct factor causing decrease of the numbers of bacteria in the rhizosphere, and other factors may be involved.
Head smut is one of the most devastating diseases in maize, causing severe yield loss worldwide. Here we report identification and fine-mapping of a major quantitative trait locus (QTL) conferring resistance to head smut. Two inbred lines 'Ji1037' (donor parent, highly resistant) and 'Huangzao4' (recurrent parent, highly susceptible) were crossed and then backcrossed to 'Huangzao4' to generate BC populations. Four putative resistance QTLs were detected in the BC(1) population, in which the major one, designated as qHSR1, was mapped on bin 2.09. The anchored ESTs, IDPs, RGAs, BAC and BAC-end sequences in bin 2.09 were exploited to develop markers to saturate the qHSR1 region. The recombinants in the qHSR1 region were obtained by screening the BC(2) population and then backcrossed again to 'Huangzao4' to produce 59 BC(2:3) families or selfed to generate nine BC(2)F(2) families. Individuals from each BC(2:3) or BC(2)F(2) family were evaluated for their resistances to head smut and genotypes at qHSR1. Analysis of genotypes between the resistant and susceptible groups within the same family allows deduction of phenotype of its parental BC(2) recombinant. Based on the 68 BC(2) recombinants, the major resistance QTL, qHSR1, was delimited into an interval of approximately 2 Mb, flanked by the newly developed markers SSR148152 and STS661. A large-scale survey of BC(2:3) and BC(2)F(2) progeny indicated that qHSR1 could exert its genetic effect by reducing the disease incidence by approximately 25%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.