Background:The risk factors for adverse events of Coronavirus have not been well described. We aimed to explore the predictive value of clinical, laboratory and CT imaging characteristics on admission for short-term outcomes of COVID-19 patients. Methods: This multicenter, retrospective, observation study enrolled 703 laboratory-confirmed COVID-19 patients admitted to 16 tertiary hospitals from 8 provinces in China between January 10, 2020 and March 13, 2020. Demographic, clinical, laboratory data, CT imaging findings on admission and clinical outcomes were collected and compared. The primary endpoint was in-hospital death, the secondary endpoints were composite clinical adverse outcomes including in-hospital death, admission to intensive care unit (ICU) and requiring invasive mechanical ventilation support (IMV). Multivariable Cox regression, Kaplan-Meier plots and log-rank test were used to explore risk factors related to in-hospital death and in-hospital adverse outcomes. Results: Of 703 patients, 55 (8%) developed adverse outcomes (including 33 deceased), 648 (92%) discharged without any adverse outcome. Multivariable regression analysis showed risk factors associated with in-hospital death included ≥ 2 comorbidities (hazard ratio [HR
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global medical systems and economies and rules our daily living life. Controlling the outbreak of SARS-CoV-2 has become one of the most important and urgent strategies throughout the whole world. As of October 2020, there have not yet been any medicines or therapies to be effective against SARS-CoV-2. Thus, rapid and sensitive diagnostics is the most important measures to control the outbreak of SARS-CoV-2. Homogeneous biosensing based on magnetic nanoparticles (MNPs) is one of the most promising approaches for rapid and highly sensitive detection of biomolecules. This paper proposes an approach for rapid and sensitive detection of SARS-CoV-2 with functionalized MNPs via the measurement of their magnetic response in an ac magnetic field. For proof of concept, mimic SARS-CoV-2 consisting of spike proteins and polystyrene beads are used for experiments. Experimental results demonstrate that the proposed approach allows the rapid detection of mimic SARS-CoV-2 with a limit of detection of 0.084 nM (5.9 fmole). The proposed approach has great potential for designing a low-cost and point-of-care device for rapid and sensitive diagnostics of SARS-CoV-2.
Using age of information as the freshness metric, we examine a multicast network in which real-time status updates are generated by the source and sent to a group of n interested receivers. We show that in order to keep the information freshness at each receiver, the source should terminate the transmission of the current update and start sending a new update packet as soon as it receives the acknowledgements back from any k out of n nodes. As the source stopping threshold k increases, a node is more likely to get the latest generated update, but the age of the most recent update is more likely to become outdated. We derive the age minimized stopping threshold k that balances the likelihood of getting the latest update and the freshness of the latest update for shifted exponential link delay. Through numerical evaluations for different stopping strategies, we find that waiting for the acknowledgements from the earliest k out of n nodes leads to lower average age than waiting for a pre-selected group of k nodes. We also observe that a properly chosen threshold k can prevent information staleness for increasing number of nodes n in the multicast network.
Abstract-Using an age of information (AoI) metric, we examine the transmission of coded updates through a binary erasure channel to a monitor/receiver. We start by deriving the average status update age of an infinite incremental redundancy (IIR) system in which the transmission of a k-symbol update continues until k symbols are received. This system is then compared to a fixed redundancy (FR) system in which each update is transmitted as an n symbol packet and the packet is successfully received if and only if at least k symbols are received. If fewer than k symbols are received, the update is discarded. Unlike the IIR system, the FR system requires no feedback from the receiver. For a single monitor system, we show that tuning the redundancy to the symbol erasure rate enables the FR system to perform as well as the IIR system. As the number of monitors is increased, the FR system outperforms the IIR system that guarantees delivery of all updates to all monitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.