Atherosclerosis develops preferentially at branches and curvatures of the arterial tree, where blood flow pattern is disturbed rather than being laminar, and wall shear stress has an irregular distribution without defined directions. The endothelium in the atherosusceptible regions, in comparison to that in atheroresistant regions, shows activation of pro-proliferative and pro-inflammatory gene expressions, reduced production of nitric oxide (NO), increased leukocyte adhesion and permeability, as well as other atheroprone phenotypes. Differences in gene expressions and cell phenotypes have been detected in endothelia residing in native atherosusceptible and atheroresistant regions of the arteries, or in arteries from animal models with artificial creation of disturbed flow. Similar results have also been shown in in vitro systems that apply controlled shear stresses with or without clear directions to cultured endothelial cells (ECs) in fluid-dynamically designed flow-loading devices. The available evidence indicates that the coordination of multiple signaling networks, rather than individual separate pathways, link the mechanical signals to specific genetic circuitries in orchestrating the mechanoresponsive networks to evoke comprehensive genetic and functional responses.
Background Upregulated by atheroprotective flow, the transcription factor Krüppel-like factor 2 (KLF2) is crucial for maintaining endothelial function. MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression at the post-transcriptional level. We examined the role of miRNAs, particularly miR-92a, in the atheroprotective flow-regulated KLF2. Methods and Results Dicer knockdown increased the level of KLF2 mRNA in human umbilical vein endothelial cells (HUVECs), suggesting that KLF2 is regulated by miRNA. In silico analysis predicted that miR-92a could bind to the 3’ untranslated region (3’UTR) of KLF2 mRNA. Overexpression of miR-92a precursor (pre-92a) decreased the expression of KLF2 and the KLF2-regulated endothelial nitric oxide synthase (eNOS) and thrombomodulin (TM) at mRNA and protein levels. A complementary finding is that miR-92a inhibitor (anti-92a) increased the mRNA and protein expression of KLF2, eNOS, and TM. Subsequent studies revealed that atheroprotective laminar flow downregulated the level of miR-92a to induce KLF2 and the level of this flow-induced KLF2 was reduced by pre-92a. Furthermore, miR-92a level was lower in HUVECs exposed to the atheroprotective pulsatile shear flow (PS) than under atheroprone oscillatory shear flow. Anti-Ago1/2 immunopreciptation coupled with RT-PCR revealed that PS decreased the functional targeting of miR-92a/KLF2 mRNA in HUVECs. Consistent with these findings, mouse carotid arteries receiving pre-92a exhibited impaired vasodilatory response to flow. Conclusions Atheroprotective flow patterns decrease the level of miR-92a, which in turn increases KLF2 expression to maintain endothelial homeostasis.
Adhesion of circulating monocytes to vascular endothelial cells (ECs) is a critical event leading to vascular inflammation and, hence, development of atherosclerosis. MicroRNAs (miRs) are a class of endogenous, highly conserved, noncoding small RNAs that play important roles in regulating gene expression and cellular function, as well as pathogenesis of atherosclerosis. Here, we showed that oscillatory shear stress (OSS) induces the expression of miR-21 at the transcriptional level in cultured human umbilical vein ECs via an increased binding of c-Jun, which is a component of transcription factor activator protein-1 (AP-1), to the promoter region of miR-21. OSS induction of miR-21 inhibited the translation, but not transcription, of peroxisome proliferators-activated receptor-α (PPARα) by 3′-UTR targeting. Overexpression of miR-21 up-regulated AP-1 activation, which was attenuated by exogenous expression of PPARα. OSS and overexpression of miR-21 enhanced the expression of adhesion molecules vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 and the consequential adhesion of monocytes to ECs. Overexpression of PPARα significantly attenuated the AP-1-mediated miR-21 expression. These results demonstrate a unique mechanism by which OSS induces AP-1-dependent miR-21 expression, which directly targets PPARα to inhibit its expression, thereby allowing activation of AP-1 and the promotion of monocyte adhesion. Our findings suggest the presence of a positive feedback loop that enables the sustained induction of miR-21, thus contributing to the proinflammatory responses of vascular endothelium under OSS.noncoding RNA | endothelial inflammatory response | feedback control | hemodynamics | atherogenesis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.