Background METTL3 is known to be involved in all stages in the life cycle of RNA. It affects the tumor formation by the regulation the m6A modification in the mRNAs of critical oncogenes or tumor suppressors. In bladder cancer, METTL3 could promote the bladder cancer progression via AFF4/NF-κB/MYC signaling network by an m6A dependent manner. Recently, METTL3 was also found to affect the m6A modification in non-coding RNAs including miRNAs, lincRNAs and circRNAs. However, whether this mechanism is related to the proliferation of tumors induced by METTL3 is not reported yet. Methods Quantitative real-time PCR, western blot and immunohistochemistry were used to detect the expression of METTL3 in bladder cancer. The survival analysis was adopted to explore the association between METTL3 expression and the prognosis of bladder cancer. Bladder cancer cells were stably transfected with lentivirus and cell proliferation and cell cycle, as well as tumorigenesis in nude mice were performed to assess the effect of METTL3 in bladder cancer. RNA immunoprecipitation (RIP), co-immunoprecipitations and RNA m6A dot blot assays were conducted to confirm that METTL3 interacted with the microprocessor protein DGCR8 and modulated the pri-miR221/222 process in an m6A-dependent manner. Luciferase reporter assay was employed to identify the direct binding sites of miR221/222 with PTEN. Colony formation assay and CCK8 assays were conducted to confirm the function of miR-221/222 in METTL3-induced cell growth in bladder cancer. Results We confirmed the oncogenic role of METTL3 in bladder cancer by accelerating the maturation of pri-miR221/222, resulting in the reduction of PTEN, which ultimately leads to the proliferation of bladder cancer. Moreover, we found that METTL3 was significantly increased in bladder cancer and correlated with poor prognosis of bladder cancer patients. Conclusions Our findings suggested that METTL3 may have an oncogenic role in bladder cancer through interacting with the microprocessor protein DGCR8 and positively modulating the pri-miR221/222 process in an m6A-dependent manner. To our knowledge, this is the first comprehensive study that METTL3 affected the tumor formation by the regulation the m6A modification in non-coding RNAs, which might provide fresh insights into bladder cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12943-019-1036-9) contains supplementary material, which is available to authorized users.
Di-n-butyl phthalate (DBP) is a kind of ubiquitous chemical linked to hormonal disruptions that affects male reproductive system. However, the mechanism of DBP-induced germ cells toxicity remains unclear. Here, we demonstrate that DBP induces reduction of proliferation, increase of apoptosis and DNA damage dependent on the PTEN/AKT pathway. Mechanistically, DBP decreases PTEN promoter methylation and increases its transcriptional activity, leading to increased PTEN expression. Notably, DNMT3b is confirmed as a target of miR-29b and miR-29b-mediated status of PTEN methylation is involved in the effects of DBP treatment. Meanwhile, DBP decreases AKT pathway expression via increasing PTEN expression. In addition, the fact that DBP decreases the sperm number and the percentage of motile and progressive sperm is associated with downregulated AKT pathway and sperm flagellum-related genes. Collectively, these findings indicate that DBP induces aberrant PTEN demethylation, leading to inhibition of the AKT pathway, which contributes to the reproductive toxicity.
Background: Circular RNAs (circRNAs) have received considerable attention in human cancer research. However, many circRNAs remain to be detected. In our study, we determined novel circRNAs and investigated their effects on bladder cancer (BCa). Methods: Microarray dataset GSE92675 was downloaded from Gene Expression Omnibus (GEO). Then, we combined computational biology with quantitative real-time polymerase chain reaction (qRT-PCR) to select related circRNAs in BCa. The selected circRNA-microRNA (miRNA)-messenger RNA (mRNA) regulatory subnetwork was determined by Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results: The regulatory network constructed from the microarray dataset (GSE92675) contained 49 differentially expressed circRNAs (DECs). GO and KEGG analyses showed that the MAPK and PI3K-AKT signaling pathways were statistically significant. On the basis of qRT-PCR and the degree value calculated by the cytoHubba plugin of Cytoscape, hsa_circ_0011385 was finally confirmed. The subnetwork around hsa_circ_0011385 was constructed. In addition, we created a protein-protein interaction (PPI) network composed of 67 nodes and 274 edges after removing independent nodes. GO and KEGG analyses showed that hubgenes were involved in cell cycle activities. Moreover, they could be regulated by miRNAs and play an eventful role in BCa pathogenesis. Conclusions: We proposed a novel circRNA-miRNA-mRNA network related to BCa pathogenesis. This network might be a new molecular biomarker and could be used to develop potential treatment strategies for BCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.