This paper presents a machine learning method, Gaussian Mixture Hidden Markov Model (GMM-HMM), for device-free activity recognition using WiFi channel state information (CSI). The basic concept of CSI is introduced and signal changes caused by human activity are described, which demonstrates that human activity can be identified using a unique mapping between action and signal variations. The phase difference expanded matrix is built by the mean and standard deviation of phase difference as feature matrix after linear correction and Savitzky-Golay filter is performed on the CSI raw phase information. The GMM-HMM is used for classification as the human activity can be modeled as the Markov process and the complex activity patterns can be fitted by multiple Gaussian density functions, respectively. The proposed system is verified on the self-collected datasets and several factors affecting the recognition accuracy are analyzed. Furthermore, the system has compared with the previous work. High accuracy and robustness in universal scenarios are realized. Experimental results show that the average recognition accuracy of the proposed system is over 97%.
INDEX TERMSActivity recognition, channel state information (CSI), device-free, Gaussian Mixture Hidden Markov Model (GMM-HMM), phase difference.
In recent years, artificial intelligence (AI) technology has promoted the development of electroencephalogram (EEG) emotion recognition. However, existing methods often overlook the computational cost of EEG emotion recognition, and there is still room for improvement in the accuracy of EEG emotion recognition. In this study, we propose a novel EEG emotion recognition algorithm called FCAN–XGBoost, which is a fusion of two algorithms, FCAN and XGBoost. The FCAN module is a feature attention network (FANet) that we have proposed for the first time, which processes the differential entropy (DE) and power spectral density (PSD) features extracted from the four frequency bands of the EEG signal and performs feature fusion and deep feature extraction. Finally, the deep features are fed into the eXtreme Gradient Boosting (XGBoost) algorithm to classify the four emotions. We evaluated the proposed method on the DEAP and DREAMER datasets and achieved a four-category emotion recognition accuracy of 95.26% and 94.05%, respectively. Additionally, our proposed method reduces the computational cost of EEG emotion recognition by at least 75.45% for computation time and 67.51% for memory occupation. The performance of FCAN–XGBoost outperforms the state-of-the-art four-category model and reduces computational costs without losing classification performance compared with other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.