To highlight the importance of quantitative and parameter-fitting-free comparisons among different models/methods, we revisited the comparisons made by Groot and Madden [J. Chem. Phys. 108, 8713 (1998)] and Chen et al. [J. Chem. Phys. 122, 104907 (2005)] between their dissipative particle dynamics (DPD) simulations of the DPD model and the self-consistent field (SCF) calculations of the "standard" model done by Matsen and Bates [Macromolecules 29, 1091 (1996)] for diblock copolymer (DBC) A-B melts. The small values of the invariant degree of polymerization used in the DPD simulations do not justify the use of the fluctuation theory of Fredrickson and Helfand [J. Chem. Phys. 87, 697 (1987)] by Groot and Madden, and their fitting between the DPD interaction parameters and the Flory-Huggins χ parameter in the "standard" model also has no rigorous basis. Even with their use of the fluctuation theory and the parameter-fitting, we do not find the "quantitative match" for the order-disorder transition of symmetric DBC claimed by Groot and Madden. For lamellar and cylindrical structures, we find that the system fluctuations/correlations decrease the bulk period and greatly suppress the large depletion of the total segmental density at the A-B interfaces as well as its oscillations in A- and B-domains predicted by our SCF calculations of the DPD model. At all values of the A-block volume fractions in the copolymer f (which are integer multiples of 0.1), our SCF calculations give the same sequence of phase transitions with varying χN as the "standard" model, where N denotes the number of segments on each DBC chain. All phase boundaries, however, are shifted to higher χN due to the finite interaction range in the DPD model, except at f = 0.1 (and 0.9), where χN at the transition between the disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to N = 10 in the DPD model. Finally, in 11 of the total 20 cases (f-χN combinations) studied in the DPD simulations, a morphology different from the SCF prediction was obtained due to the differences between these two methods.
Using fast off-lattice Monte Carlo simulations with experimentally accessible fluctuations, we reported the first systematic study unambiguously quantifying the shift of the order-disorder transition (ODT) χ* of symmetric diblock copolymers from the mean-field prediction χ(MF)*. Our simulations are performed in a canonical ensemble with variable box lengths to eliminate the restriction of periodic boundary conditions on the lamellar period, and give the most accurate data of χ* and bulk lamellar period reported to date. Exactly the same model system (Hamiltonian) is used in both our simulations and mean-field theory; the ODT shift is therefore due to the fluctuations/correlations neglected by the latter. While χ*/χ(MF)*-1∝N(-k) is found with N denoting the invariant degree of polymerization, k decreases around the N-value corresponding to the face-centered cubic close packing of polymer segments as hard spheres, indicating the short-range correlation effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.