This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.
A novel compound-structure transverse-flux permanent-magnet synchronous machine (CS-TFPMSM) is proposed in this paper, which is used in hybrid electric vehicles (HEVs) to fulfill the power-split function. The key component of the CS-TFPMSM is a brushless transverse-flux dual rotor machine (TFDRM). The TFDRM originates from the transverse-flux machines, and is capable of speed adjustment between the transverse-flux rotor and the permanent-magnet rotor without using any brushes. The structure and principle of the TFDRM are described. The torque equations of the TFDRM are deduced, which are different from those of traditional machines. Based on the investigation, the TFDRM tends to have high leakage and a poor power factor. The method to obtain high power factor is discussed. The back electromotive force (BEMF) and torque of the TFDRM are simulated with the variation of parameters, such as pole-pair number, width of the permanent magnets (PMs), and so on. A prototype of a 10kW TFDRM is designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.