Common buckwheat (Fagopyrum esculentum M.) is an important pseudo-cereal crop and contains an abundance of nutrients and bioactive compounds. However, the yield of buckwheat is low compared to that of other major crops. QTL mapping and candidate gene screening of grain size are very important for increasing production in common buckwheat through molecular breeding in the future. In the present study, an F1 segregating population with 217 individuals was established using a cross between Ukraine daliqiao (UD) and Youqiao 2 (YQ2) that showed a significant difference in grain size. The InDel and SSR primers were developed based on transcriptome sequencing between parents in the previous study. We constructed a genetic linkage map, including 39 SSR loci and 93 InDel loci, with a total length of 1398.33 cM and an average spacing of 10.59 cM. Combined with the grain size phenotype data of the F1 population, a total of 14 QTL were detected, including 6-grain length QTL, 3-grain width QTL, and 5 hundred-grain-weight QTL. QTL of grain width and hundred-grain weight were all detected near SWU_Fe_InDel086 and SWU_Fe_InDel076. Some putative candidate genes with the ex1pression or InDel difference between parents were screened within the QTL interval. This study would lay the foundation for map-based cloning and molecular mechanism of grain size and ultimately improvement of yield in common buckwheat.
Grain size with high heritability and stability is an important selection target during Tartary buckwheat breeding. However, the mechanisms that regulate Tartary buckwheat grain development are unknown. We generated transcriptome and metabolome sequencing from 10 and 15 days past anthesis (DPA) grains of big grain mutant (bg1) and WT, and identified 4108 differentially expressed genes (DEGs) including 93 significantly up-regulated differential genes and 85 significantly down-regulated genes in both stages, simultaneously. Meanwhile, we identified DEGs involved in ubiquitin-proteasome pathway, HAI-KU (IKU) pathway, mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone (auxin, brassinosteroids and cytokinins) transduction pathway and five transcription factor families, including APETALA (AP2), GROWTH-REGULATING FACTORS (GRF), AUXIN RESPONSE FACTOR (ARF), WRKY and MYB. Weighted gene co-expression network analysis (WGCNA) was performed and obtained 9 core DEGs. Conjoint analyses of transcriptome and metabolome sequencing screened out 394 DEGs. Using a combined comprehensive analysis, we identified 24 potential candidate genes that encode E3 ubiquitin-protein ligase HIP1, EMBRYO-DEFECTIVE (EMB) protein, receptor-like protein kinase FERONIA (FER), kinesin-4 protein SRG1, and so on, which may be associated with the big-grain mutant bg1. Finally, a quantitative real-time Polymerase Chain Reaction (qRT-PCR) assay was conducted to validate the identified DEGs. Our results provide additional knowledge for identification and functions of causal candidate genes responsible for the variation in grain size and will be an invaluable resource for the genetic dissection of Tartary buckwheat high-yield molecular breeding.
Common buckwheat (Fagopyrum esculentum M.) is an important traditional miscellaneous grain crop. However, seed-shattering is a significant problem in common buckwheat. To investigate the genetic architecture and genetic regulation of seed-shattering in common buckwheat, we constructed a genetic linkage map using the F2 population of Gr (green-flower mutant and shattering resistance) and UD (white flower and susceptible to shattering), which included eight linkage groups with 174 loci, and detected seven QTLs of pedicel strength. RNA-seq analysis of pedicel in two parents revealed 214 differentially expressed genes DEGs that play roles in phenylpropanoid biosynthesis, vitamin B6 metabolism, and flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) was performed and screened out 19 core hub genes. Untargeted GC-MS analysis detected 138 different metabolites and conjoint analysis screened out 11 DEGs, which were significantly associated with differential metabolites. Furthermore, we identified 43 genes in the QTLs, of which six genes had high expression levels in the pedicel of common buckwheat. Finally, 21 candidate genes were screened out based on the above analysis and gene function. Our results provided additional knowledge for the identification and functions of causal candidate genes responsible for the variation in seed-shattering and would be an invaluable resource for the genetic dissection of common buckwheat resistance-shattering molecular breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.