With the continuous progress and development in the field of Internet technology, the area of medical image processing has also developed along with it. Specially, digital watermarking technology plays an essential role in the field of medical image processing and greatly improves the security of medical image information. A medical image watermarking algorithm based on an accelerated‐KAZE discrete cosine transform (AKAZE‐DCT) is proposed to address the poor robustness of medical image watermarking algorithms to geometric attacks, which leads to low security of the information contained in medical images. First, the AKAZE‐DCT algorithm is used to extract the feature vector of the medical image and then combined with the perceptual hashing technique to obtain the feature sequence of the medical image; then, the watermarking image is encrypted with logistic chaos dislocation to get the encrypted watermarking image, which ensures the security of the watermarking information; finally, the watermarking is embedded and extracted with the zero‐watermarking technique. The experimental results show that the algorithm can effectively extract the watermark under conventional and geometric attacks, reflecting better robustness and invisibility, and has certain practicality in the medical field compared with other algorithms.
To solve the problem of poor robustness of existing traditional DCT‐based medical image watermarking algorithms under geometric attacks, a novel deep learning‐based robust zero‐watermarking algorithm for medical images is proposed. A Residual‐DenseNet is designed, which took low‐frequency features after discrete cosine transformation of medical images as labels and applied skip connections and a new objective function to strengthen and extract high‐level semantic features that can effectively distinguish different medical images and binarise them to get robust hash vectors. Then, these hash vectors are bound with the chaotically encrypted watermark to generate the corresponding keys to complete the generation of watermark. The proposed algorithm neither modified the original medical image in the watermark generation stage nor required the original medical image in the watermark extraction stage. Moreover, the proposed algorithm is also suitable for multiple watermarks. Experimental results show that the proposed algorithm has good robust performance under both conventional and geometric attacks.
In recent years, ozone (O3) has gradually become the primary pollutant plaguing urban air quality. Accurate and efficient ozone prediction is of great significance to the prevention and control of ozone pollution. The air quality monitoring network provides multisource pollutant concentration monitoring data for ozone prediction, but ozone prediction based on multisource monitoring data still faces the challenges of each station’s series of data. Aiming at the problems of low prediction accuracy and low computational efficiency in traditional atmospheric ozone concentration prediction, ozone concentration prediction using dual series decomposition was proposed by variational mode decomposition (VMD), ensemble empirical mode decomposition (EEMD), and long short-term memory (LSTM). First, the historical data series of Nanjing air quality monitoring stations is decomposed by VMD, and then the EEMD algorithm is applied to the residual of VMD to obtain several characteristic intrinsic mode function (IMF) components; each characteristic IMF component is trained by LSTM to obtain the prediction result of each component, and then the final result can be obtained by linear superposition. The proposed method achieved the best results with R2 = 99%, MSE = 5.38, MAE = 4.54, and MAPE = 3.12. Because LSTM has strong adaptive learning ability and good memory function, it has the learning advantage of long-term memory for long-term data, and the prediction results are more accurate. According to the data, the proposed method is superior to the baseline models in terms of statistical metrics. As a result, the proposed hybrid method can serve as a reliable model for ozone forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.