Metasurfaces are two-dimensional structures enabling complete control on light amplitude, phase, and polarization. Unlike plasmonic metasurfaces, silicon structures facilitate high transmission, low losses, and compatibility with existing semiconductor technologies. We experimentally demonstrate two examples of high-efficiency polarization-sensitive dielectric metasurfaces with 2π phase control in transmission mode (45% transmission efficiency for the vortex converter and 36% transmission efficiency for the beam steering device) at telecommunication wavelengths. Silicon metasurfaces are poised to enable a versatile platform for the realization of all-optical circuitry on a chip.
Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.
Fibroblast growth factor 21 (FGF21) is a promising drug candidate for the treatment of type 2 diabetes. However, the use of wild type native FGF21 is challenging due to several limitations. Among these are its short half-life, its susceptibility to in vivo proteolytic degradation and its propensity to in vitro aggregation. We here describe a rationale-based protein engineering approach to generate a potent long-acting FGF21 analog with improved resistance to proteolysis and aggregation. A recombinant Fc-FGF21 fusion protein was constructed by fusing the Fc domain of human IgG1 to the N-terminus of human mature FGF21 via a linker peptide. The Fc positioned at the N-terminus was determined to be superior to the C-terminus as the N-terminal Fc fusion retained the βKlotho binding affinity and the in vitro and in vivo potency similar to native FGF21. Two specific point mutations were introduced into FGF21. The leucine to arginine substitution at position 98 (L98R) suppressed FGF21 aggregation at high concentrations and elevated temperatures. The proline to glycine replacement at position 171 (P171G) eliminated a site-specific proteolytic cleavage of FGF21 identified in mice and cynomolgus monkeys. The derived Fc-FGF21(RG) molecule demonstrated a significantly improved circulating half-life while maintaining the in vitro activity similar to that of wild type protein. The half-life of Fc-FGF21(RG) was 11 h in mice and 30 h in monkeys as compared to 1-2 h for native FGF21 or Fc-FGF21 wild type. A single administration of Fc-FGF21(RG) in diabetic mice resulted in a sustained reduction in blood glucose levels and body weight gains up to 5-7 days, whereas the efficacy of FGF21 or Fc-FGF21 lasted only for 1 day. In summary, we engineered a potent and efficacious long-acting FGF21 analog with a favorable pharmaceutical property for potential clinical development.
We propose a design of an extremely broad frequency band absorber based on destructive interference mechanism. Metamaterial of multilayered SRRs structure is used to realize a desirable refractive index dispersion spectrum, which can induce a successive anti-reflection in a wide frequency range. The corresponding high absorptance originates from the destructive interference of two reflection waves from the two surfaces of the metamaterial. A strongly absorptive bandwidth of almost 60 GHz is demonstrated in the range of 0 to 70 GHz numerically. This design provides an effective and feasible way to construct broad band absorber in stealth technology, as well as the enhanced transmittance devices.
A class of strongly anisotropic materials having their principal elements of dielectric permittivity or magnetic permeability tensors of opposite signs, so-called indefinite or hyperbolic materials, has recently attracted significant attention. These materials enabled such novel properties and potential applications as all-angle negative refraction, high density of states, and imaging beyond the diffraction limit using a so-called hyperlens. While several studies identified a few examples of negative refractions in birefringent crystals existing in nature, the majority of optical materials with hyperbolic dispersion relations known to date are engineered composite materials, “metamaterials”, such as metal-dielectric subwavelength multilayered structures or metal nanowires in a dielectric matrix. In this paper, we investigate naturally existing hyperbolic materials with indefinite permittivity for a range of frequencies from terahertz to ultraviolet. These include graphite, MgB2, cuprate, and ruthenate. Spectroscopic ellipsometry is used to characterize the dielectric properties of graphite and MgB2, and a fitting method based on reflectance spectra is used to determine the indefinite permittivity of the cuprate and ruthenate. Lastly, we discuss the mechanisms behind indefinite properties of these materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.