Application of a novel bioorganic fertilizer (BIO) has been effectively used to inhibit weeds in rice paddies. To identify changes in soil bacterial community and enzymes in response to BIO treatments, field experiments were carried out in five major rice-growing areas in China. The dominant phylogenetic groups recorded included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Anaeromyxobacter, Bacteroides, Bifidobacterium, Escherichia- Shigella, Geobacter and Haliangium were significantly different between BIO-treatment and untreated control and aided in general function (R), amino acid transport, metabolism (E) and transcription (K) clusters. The soil chemical properties and enzyme activities were less affected by BIO at these study sites. RDA analysis showed that soil bacterial community had a significant positive correlations among northern latitude, eastern longitude, exchangeable K, total K, total P, soil pH, and total N, except for organic matter, hydrolytic N and extractable P. Overall, our work showed that application of BIO does not alter the main community structure and functional diversity of soil bacteria in rice paddies and should be encouraged for use as a sustainable weed management strategy.
Application of the novel bioorganic fertilizer (BIO) is effectively used to inhibit weeds in rice paddies. To identify changes in soil bacterial community and enzymes in response to BIO treatments, field experiments were carried out in five major rice-growing areas in China. The dominant phylogenetic groups recorded included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Anaeromyxobacter, Bacteroides, Bifidobacterium, Escgerichia- Shigella, Geobacter and Haliangium were significantly different and aided in general function (R), amino acid transport, metabolism (E) and transcription (K) clusters between BIO-treatment and untreated control. The soil chemical properties and enzyme activities were less affected by BIO at these study sites. RDA analysis showed that soil bacterial community had a significant positive correlations among northern latitude, eastern longitude, exchangeable K, total K, total P, soil pH, and total N, except for organic matter, hydrolytic N and extractable P. Overall, our work showed that application of BIO does not alter the main community structure and functional diversity of soil bacterial in rice paddies and should be encouraged for use as a sustainable weed management strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.