A novel silicon carbide (SiC) continuous ceramic fiber-reinforced (CCFR) Ti/Al3Ti Metal-Intermetallic-Laminate (MIL) composite was fabricated. A high-efficiency semi-analytical model was proposed based on the numerical equivalent inclusion method (NEIM) for analyzing the small-strain elasto-plastic contact in the early stage of the penetration process. The microstructure and interface features were characterized by the scanning electron microscopy (SEM). Quasi-static compression tests were performed to determine the contact response and validate the proposed model. A group of in-depth parametric studies were carried out to quantify the influence of the microstructure. The comparison between results under the sphere-plane and plane-plane contact load indicates that, under the first sphere-plane, the compressive strength and failure strain are both lower and the SiC reinforcement effect on strength is very clear while the effect on ductility is not clear. The maximum plastic strain concentration (MPSC) in the Al3Ti layer is closest to the upper boundary of the central SiC fiber and then extends along the depth direction as the load increases, which are also the locations where cracks may initiate and extend. Moreover, the CCFR-MIL composite shows better mechanical properties when the center distance between adjacent SiC fibers is four times the fiber diameter and the volume fraction of Ti is 40%.
An innovative, high-strength metal–intermetallic-laminate (MIL) composite Ti-(SiCf/Al3Ti), reinforced by double or even several SiC fiber rows, was fabricated. A high-efficiency, semi-analytical model with a numerical equivalent inclusion method (NEIM) was employed to investigate the deformation behaviors, microscopic strengthening, and failure mechanisms of the composite during elasto-plastic sphere–plane contact. The microstructure and interface features were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The contact model for the Ti-(SiCf/Al3Ti) composite was validated via quasi-static compressive indentation tests with a spherical indenter. A series of in-depth parametric studies were conducted to quantify the effect of the microstructure. The results indicate that the as-fabricated laminated composite has a well-organized microstructure and a higher volume fraction of fibers. The SiC fiber rows effectively enhance the strength and toughness of the composite. The optimal diameter of the SiC fibers is 32 μm when the horizontal center distance between the adjacent fibers is 2.5 times that of the fiber diameter. The hole defects occurring above the fibers would damage the material strength most compared with those occurring in other positions. The optimal quantity of the SiC fiber rows is four when the thickness of the SiCf/Al3Ti layer is 400 μm and the fiber diameter is 8 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.