Diagenesis and pore evolution of tight sandstone reservoir is one of the most important issues surrounding clastic reservoirs. The tight sandstone of the Shanxi Formation is an important oil and gas producing layer of the Upper Paleozoic in Ordos Basin, and its densification process has an important impact on reservoir quality. This study determined the physical properties and diagenetic evolution of Shanxi Formation sandstones and quantitatively calculated the pore loss in the diagenetic process. Microscopic identification, cathodoluminescence, and a scanning electron microscope were used identify diagenesis, and the diagenesis evolution process was clarified along with inclusion analysis. In addition, reservoir quality was determined based on the identification of pore types and physical porosity. Results show that rock types are mainly sublitharenite and litharenite. The reservoir has numerous secondary pores after experiencing compaction, cementation, and dissolution. We obtained insight into the relationship between homogenous temperature and two hydrocarbon charges. The results indicated that there were two hydrocarbon charges in the Late Triassic–Early Jurassic (70–90 °C) and Middle Jurassic–Early Cretaceous (110–130 °C) before reservoir densification. The quantitative calculation of pore loss shows that the average apparent compaction, cementation, and dissolution rates are 67.36%, 22.24%, and 80.76%, respectively. Compaction directly affected the reservoir tightness, and intense dissolution was beneficial to improve the physical properties of the reservoir.
The physical property heterogeneity of tight sandstones was mainly caused by complex alteration of various diagenesis combinations during burial process. However, diagenetic evolution of different diagenesis combinations which generally result in the strong difference and heterogeneity of physical property and pore structure is rarely well understood. The Middle Permian lower Shihezi Formation is one of the most important tight gas sandstone reservoirs in the Hangjinqi area of Ordos Basin, China. The reservoir heterogeneity of lower Shihezi Formation, which was caused by the differential diagenesis combination, is crucial to efficient exploration and development. Evolution mechanism of differential diagenesis combination and its effect on the reservoir quality in the tight lower Shihezi Formation sandstone in the Hangjinqi area of Ordos Basin was investigated by means of thin-section description, cathodoluminescence (CL) imaging, X-ray diffraction (XRD), scanning electron microscopy (SEM), and homogenization temperature of fluid inclusions. The lower Shihezi Formation sandstones can be divided into four diagenesis combination types according to the reservoir characteristics and diagenetic relationship. The main diagenetic sequence was mechanical compaction-chlorite rim-early pore-filling calcite cementation-dissolution-authigenic kaolinite-quartz cementation-late calcite cementation. Differential diagenesis combination was mainly controlled by the petrological characteristics, microfacies, and fault. Low content of rock fragment and high content of detrital quartz were beneficial to the compaction resistance and cementation. The moderate content of pore-filling calcite was conducive to pore space protection and feldspar dissolution. The faults control dissolution and differential diagenesis combination by influencing the migration of acid fluids. Moderate compaction-moderate cementation-moderate dissolution type (BBB type) and weak compaction-moderate cementation-strong dissolution type (CBA type) were in favour of high-quality reservoir development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.