An innovative design strategy for the structural and chemical synergistic encapsulation of polysulfides is proposed enabling the achievement of ultra stable lithium–sulfur batteries.
An electrically rechargeable, nanoarchitectured air electrode that morphologically emulates a human hair array is demonstrated in a zinc-air battery. The hair-like array of mesoporous cobalt oxide nanopetals in nitrogen-doped carbon nanotubes is grown directly on a stainless-steel mesh. This electrode produces both flexibility and improved battery performance, and thus fully manifests the advantages of flexible rechargeable zinc-air batteries in practical applications.
Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4-based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries.
The notorious shuttling behaviors and sluggish conversion kinetics of the intermediate lithium polysulfides (LPS) are hindering the practical application of lithium sulfur (Li−S) batteries. Herein, an ultrafine, amorphous, and oxygendeficient niobium pentoxide nanocluster embedded in microporous carbon nanospheres (A-Nb 2 O 5−x @MCS) was developed as a multifunctional sulfur immobilizer and promoter toward superior shuttle inhibition and conversion catalyzation of LPS. The A-Nb 2 O 5−x nanocluster implanted framework uniformizes sulfur distribution, exposes vast active interfaces, and offers a reduced ion/electron transportation pathway for expedited redox reaction. Moreover, the low crystallinity feature of A-Nb 2 O 5−x manipulates the LPS chemical affinity, while the defect chemistry enhances the intrinsic conductivity and catalytic activity for rapid electrochemical conversions. Attributed to these superiorities, A-Nb 2 O 5−x @MCS delivers good Li−S battery performances, that is, high areal capacity of 6.62 mAh cm −2 under high sulfur loading and low electrolyte/sulfur ratio, superb rate capability, and cyclability over 1200 cycles with an ultralow capacity fading rate of 0.024% per cycle. This work provides a synergistic regulation on crystallinity and oxygen deficiency toward rapid and durable sulfur electrochemistry, holding a great promise in developing practically viable Li−S batteries and enlightening material engineering in related energy storage and conversion areas.
The shuttling behavior and sluggish conversion kinetics of the intermediate lithium polysulfides (LiPSs) represent the main obstructions to the practical application of lithium–sulfur (Li–S) batteries. Herein, an anion‐deficient design of antimony selenide (Sb2Se3−x) is developed to establish a multifunctional LiPS barrier toward the inhibition of polysulfide shuttling and enhancement of battery performance. The defect chemistry in the as‐developed Sb2Se3−x promotes the intrinsic conductivity, strengthens the chemical affinity to LiPSs, and catalyzes the sulfur electrochemical conversion, which are verified by a series of computational and experimental results. Attributed to these unique superiorities, the obtained LiPS barrier efficiently promotes and stabilizes the sulfur electrochemistry, thus enabling excellent Li–S battery performance, e.g., outstanding cyclability over 500 cycles at 1.0 C with a minimum capacity fading rate of 0.027% per cycle, a superb rate capability up to 8.0 C, and a high areal capacity of 7.46 mAh cm−2 under raised sulfur loading. This work offers a defect engineering strategy toward fast and durable sulfur electrochemistry, holding great promise in developing practically viable Li–S batteries as well as enlightening the material design of related energy storage and conversion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.