Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O) microengineering technique. The UV/O microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.
Assembly of nanoparticles as interfacial stabilizers at oil-in-water (O/W) interfaces into microscopic suprastructures for stabilizing Pickering emulsions is an intriguing focus in the fields of chemical industry and material sciences. However, it is still a major challenge to assemble nanoscale suprastructures using nanoparticles as building blocks at O/W interfaces for fabricating nanoscale emulsion droplets with applicable potential in nanomedicine. Here, we show that it is possible to fabricate the nanodroplets by assembling highly deformable nanogels into the nanoscale suprastructures at spatially confined O/W interfaces. The compressed assembly of the nanogels induced the formation of the nanoscale suprastructures upon energy input at the nanoscale O/W interface. The hydrogen bonding interaction between the nanogels at the O/W interface are possibly responsible for the stabilization of the nanoscale suprastructures. The nanoscale suprastructures are further employed to stabilize the paclitaxel-loaded nanodroplets, which are found to provide sustained release of the drug, enhanced in vitro cytotoxicity, and prolonged in vivo blood circulation. Furthermore, the tissue distribution and antitumor efficacy studies show that the nanodroplets could induce a higher drug accumulation at the tumor site and enhance tumor growth inhibition when compared with the commercial product. This approach provides a novel universal strategy to fabricate nanoscale suprastructures for stabilizing nanodroplets with built-in payloads using deformable nanoparticles and displays a promising potential in nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.