In recent years, deep learning has been widely used in emotion recognition, but the models and algorithms in practical applications still have much room for improvement. With the development of graph convolutional neural networks, new ideas for emotional recognition based on EEG have arisen. In this paper, we propose a novel deep learning model-based emotion recognition method. First, the EEG signal is spatially filtered by using the common spatial pattern (CSP), and the filtered signal is converted into a time–frequency map by continuous wavelet transform (CWT). This is used as the input data of the network; then the feature extraction and classification are performed by the deep learning model. We called this model CNN-BiLSTM-MHSA, which consists of a convolutional neural network (CNN), bi-directional long and short-term memory network (BiLSTM), and multi-head self-attention (MHSA). This network is capable of learning the time series and spatial information of EEG emotion signals in depth, smoothing EEG signals and extracting deep features with CNN, learning emotion information of future and past time series with BiLSTM, and improving recognition accuracy with MHSA by reassigning weights to emotion features. Finally, we conducted experiments on the DEAP dataset for sentiment classification, and the experimental results showed that the method has better results than the existing classification. The accuracy of high and low valence, arousal, dominance, and liking state recognition is 98.10%, and the accuracy of four classifications of high and low valence-arousal recognition is 89.33%.
Pathologists generally pan, focus, zoom and scan tissue biopsies either under microscopes or on digital images for diagnosis. With the rapid development of whole-slide digital scanners for histopathology, computer-assisted digital pathology image analysis has attracted increasing clinical attention. Thus, the working style of pathologists is also beginning to change. Computer-assisted image analysis systems have been developed to help pathologists perform basic examinations. This paper presents a novel lightweight detection framework for automatic tumor detection in whole-slide histopathology images. We develop the Double Magnification Combination (DMC) classifier, which is a modified DenseNet-40 to make patch-level predictions with only 0.3 million parameters. To improve the detection performance of multiple instances, we propose an improved adaptive sampling method with superpixel segmentation and introduce a new heuristic factor, local sampling density, as the convergence condition of iterations. In postprocessing, we use a CNN model with 4 convolutional layers to regulate the patch-level predictions based on the predictions of adjacent sampling points and use linear interpolation to generate a tumor probability heatmap. The entire framework was trained and validated using the dataset from the Camelyon16 Grand Challenge and Hubei Cancer Hospital. In our experiments, the average AUC was 0.95 in the test set for pixel-level detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.