BackgroundPrevious studies showed that TNF-α could activate voltage-gated Na+ channels (VGSCs) in the peripheral nervous system (PNS). Since TNF-α is implicated in many central nervous system (CNS) diseases, we examined potential effects of TNF-α on VGSCs in the CNS.MethodsEffects of TNF-α (1–1000 pg/mL, for 4–48 h) on VGSC currents were examined using whole-cell voltage clamp and current clamp techniques in primary culture of mouse cortical neurons. Expression of Nav1.1, Nav1.2, Nav1.3, and Nav1.6 were examined at both the mRNA and protein levels, prior to and after TNF-α exposure.ResultsTNF-α increased Na+ currents by accelerating the activation of VGSCs. The threshold for action potential (AP) was decreased and firing rate were increased. VGSCs were up-regulated at both the mRNA and protein levels. The observed effects of TNF-α on Na+ currents were inhibited by pre-incubation with the NF-κB inhibitor BAY 11–7082 (1 μM) or the p38 mitogen-activated protein kinases (MAPK) inhibitor SB203580 (1 μM).ConclusionsTNF-α increases Na+ currents by accelerating the channel activation as well as increasing the expression of VGSCs in a mechanism dependent upon NF-κB and p38 MAPK signal pathways in CNS neurons.
BackgroundTraumatic brain injury (TBI) triggers both immediate (primary) and long-term (secondary) tissue damages. Secondary damages can last from hours to days or even a lifetime. Secondary damages implicate several mechanisms, including influence of inflammatory mediators, mainly cytokines, on excitability of ion channels. However, studies should further explore the effects of inflammatory cytokines on voltage-gated sodium channels (VGSCs) and excitability in distal intact neurons.MethodsMixed cultures of mouse cortical astrocytes and neurons were subjected to mechanical injury (trauma) to mimic TBI in vitro. Expression of various cytokines in these cultures were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. A trauma-conditioned medium with or without brain-derived neurotrophic factor (BDNF) was added to mouse primary cortical neurons for 6 and 24 h to mimic combined effects of multiple inflammatory cytokines on VGSCs. Spike behaviors of distal intact neurons were examined by whole-cell patch-clamp recordings.ResultsMechanical injury in mixed cortical neuron–astrocyte cultures significantly increased expression levels of multiple cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, monocyte chemoattractant protein-1, chemokine (C-C motif) ligand-5, IL-10, and transforming growth factor-β1, at 6 and 24 h after injury. Incubation in trauma-conditioned medium increased functional VGSCs in neuronal membranes and Na+ currents. Enhanced VGSCs were almost completely abolished by BDNF, and reinforcement of Na+ currents was also reduced in a dose-dependent manner. BDNF (30 ng/mL) also significantly reversed reduced neuronal cell viability, which was induced by medium conditioned at 6 h. At 6 and 24 h, trauma-conditioned medium significantly increased spike frequency but not spike threshold.ConclusionsIn TBI, the combined effect of inflammatory cytokines is directly involved in VGSC, Na+ current, and excitability dysfunction in distal intact neurons. BDNF may partly exert neuroprotective effects by maintaining balance of VGSC function in distal intact neurons.
Typical antipsychotics are characterized by extrapyramidal syndrome (EPS). Previous studies demonstrated that typical antipsychotics could inhibit neuronal voltage-gated sodium channel (VGSC). However, EPS typically emerge only upon prolonged exposure. As a result, we examined effects of haloperidol, a prototype typical antipsychotic, on neuronal VGSC upon incubation for varying duration. Briefly, VGSC currents were activated and recorded using a whole-cell patch-clamp technique in primary culture of mouse cortical neurons. VGSC activity was inhibited by acute haloperidol exposure (for minutes), but enhanced in a time- and concentration-dependent manner by chronic haloperidol exposure (for hours). The effects of chronic haloperidol were associated with increased expression of VGSC subunits as well as corresponding electrophysiological channel properties. In summary, we found enhanced VGSC currents upon chronic haloperidol exposure in cortical neurons in contrast to inhibition by acute haloperidol exposure. Such a results may contribute to EPS of typical antipsychotics.
Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour exposure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na+ channels using a patch-clamp technique. Voltage-clamp recording results demonstrated that interleukin-6 suppressed Na+ currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na+ channels in rat cortical neurons by interleukin-6 is time- and dose-dependent.
(14). However, it has been reported (1,13,29,34) that the cranial conversion from a "closed box" to an "open box" affects the balance of pathophysiology, which brings risks. Paradoxical herniation, an unusual complication of cerebrospinal fluid (CSF) drainage in patients with large decompressive █ InTRODuCTIOn T he patient with uncontrollable intracranial hypertension usually undergoes emergency decompressive craniectomy (1,7,14). The decompressive craniectomy provided more space for the masses or edema of the brain AIM: We aimed to investigate the importance of early diagnosis and proper management of paradoxical herniation based on the data of 13 patients who had 14 occurrences of paradoxical herniation. MATERIAL and METhODS:The characteristics and the effectiveness of treatments of 13 patients with paradoxical herniation were reviewed and analyzed retrospectively.RESuLTS: Paradoxical herniation occurred in eight patients (61.54%) during the postoperative 2 weeks and they presented with typical symptoms of brain herniation and a tense skin flap without sinking at the region of decompressive craniectomy. On the other hand, six patients developed paradoxical herniation in the postoperative period of 2 weeks to 2 months and presented with sinking skin flaps and delayed neurological deficits. Furthermore, all patients received emergency treatments, including sufficient hydration, clamping cerebrospinal fluid (CSF) drainage, and being placed in the Trendelenburg position. Six patients achieved full neurologic recovery after successful cranioplasty.COnCLuSIOn: Intracranial hypotension causing paradoxical herniation can rapidly progress, especially along with CSF depletion. It is important for neurosurgeons to suspect paradoxical herniation in a subset of patients with large cranium defects and tense skin flap without sinking during the postoperative 2 weeks. Paradoxical herniation is rapidly reverted by improving CSF hydration, and performing early cranioplasty referred as the definitive treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.