This paper presents a novel optimizing compiler for general purpose computation on graphics processing units (GPGPU). It addresses two major challenges of developing high performance GPGPU programs: effective utilization of GPU memory hierarchy and judicious management of parallelism.The input to our compiler is a naïve GPU kernel function, which is functionally correct but without any consideration for performance optimization. The compiler analyzes the code, identifies its memory access patterns, and generates both the optimized kernel and the kernel invocation parameters. Our optimization process includes vectorization and memory coalescing for memory bandwidth enhancement, tiling and unrolling for data reuse and parallelism management, and thread block remapping or address-offset insertion for partition-camping elimination. The experiments on a set of scientific and media processing algorithms show that our optimized code achieves very high performance, either superior or very close to the highly fine-tuned library, NVIDIA CUBLAS 2.2, and up to 128 times speedups over the naive versions. Another distinguishing feature of our compiler is the understandability of the optimized code, which is useful for performance analysis and algorithm refinement.
Software cache-based side channel attacks present serious threats to modern computer systems. Using caches as a side channel, these attacks are able to derive secret keys used in cryptographic operations through legitimate activities. Among existing countermeasures, software solutions are typically application specific and incur substantial performance overhead. Recent hardware proposals including the Partition-Locked cache (PLcache) and Random-Permutation cache (RPcache) [23], although very effective in reducing performance overhead while enhancing the security level, may still be vulnerable to advanced cache attacks.In this paper, we propose three hardware-software approaches to defend against software cache-based attacks -they present different tradeoffs between hardware complexity and performance overhead. First, we propose to use preloading to secure the PLcache. Second, we leverage informing loads, which is a lightweight architectural support originally proposed to improve memory performance, to protect the RPcache. Third, we propose novel software permutation to replace the random permutation hardware in the RPcache. This way, regular caches can be protected with hardware support for informing loads. In our experiments, we analyze various processor models for their vulnerability to cache attacks and demonstrate that even to the processor model that is most vulnerable to cache attacks, our proposed software-hardware integrated schemes provide strong security protection.
In this paper, we present our effort in developing an opensource GPU (graphics processing units) code library for the MATLAB Image Processing Toolbox (IPT). We ported a dozen of representative functions from IPT and based on their inherent characteristics, we grouped these functions into four categories: data independent, data sharing, algorithm dependent and data dependent. For each category, we present a detailed case study, which reveals interesting insights on how to efficiently optimize the code for GPUs and highlight performance-critical hardware features, some of which have not been well explored in existing literature. Our results show drastic speedups for the functions in the data-independent or data-sharing category by leveraging hardware support judiciously; and moderate speedups for those in the algorithm-dependent category by careful algorithm selection and parallelization. For the functions in the last category, finegrain synchronization and data-dependency requirements are the main obstacles to an efficient implementation on GPUs.
This article presents a novel optimizing compiler for general purpose computation on graphics processing units (GPGPU). It addresses two major challenges of developing high performance GPGPU programs: effective utilization of GPU memory hierarchy and judicious management of parallelism. The input to our compiler is a naïve GPU kernel function, which is functionally correct but without any consideration for performance optimization. The compiler generates two kernels, one optimized for global memories and the other for texture memories. The proposed compilation process is effective for both AMD/ATI and NVIDIA GPUs. The experiments show that our optimized code achieves very high performance, either superior or very close to highly fine-tuned libraries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.