A highly virulent cotton wilt pathogen, Fusarium oxysporum f. sp. vasinfectum VCG0114 (race 4) was found in West Texas in 2017, after being known in California since 2001. Isolates obtained from wilted plants collected in 2017 from Texas, in 2015 from China, and during 2001 to 2014 from California and isolates from historical collections including the race 4 reference isolate were characterized by soil-infestation pathogenicity assays, DNA sequence analysis, and vegetative compatibility analysis. All obtained F. oxysporum f. sp. vasinfectum isolates belonged to VCG0114. All of these isolates, except one isolate from China, caused disease in a soil-infestation assay without nematodes. Thus, they belong to the nematode-independent pathotype. Texas isolates were significantly more virulent than were isolates from China or California on Gossypium barbadense ‘Pima S-7’. Four different genotypes (N, T, MT, and MiT) were identified based on the transposable element Tfo1 insertion into the PHO gene and independent MULE or MITE insertions into the Tfo1 transposon. Some significant differences in virulence were detected among the genotypes in some locations. No differences in pathogenicity were observed between the California and China collection isolates on Pima S-7, and the virulence of the major genotypes was similar on the Gossypium hirsutum cultivar ‘Stoneville 474’ or the Barbren 713 germplasm line. Simple polymerase chain reaction (PCR) methods were developed to specifically determine and detect the four genotypes within VCG0114. A specific PCR method to detect all VCG0114 isolates was also developed. These methods will facilitate the timely identification of infested fields and seed lots and the elucidation of evolutionary relationships among the isolates. This should help to closely monitor the movement of the pathogen and reduce dissemination of these devastating pathogens.
Recently the world has been entangled by insufficient food such as the lack of rice which threatens the safety of world food and affect sustainable development of the world economy, resulting in rising of food price. To address this issue, cotton appears as a possible source of both fiber and food. The research in recent years indeed showed bright prospects for this expectation. However, gossypol stored in the glands of cotton is toxic to nonruminant animals and humans, which wastes large amounts of cottonseed protein that could potentially provide the annual protein requirements for half a billion people. Gossypium species are characterized by their lysigenous glands containing terpenoid aldehydes, important secondary phytoalexins consisting mainly of gossypol, which constitute one of the important plant's defense system against pests and diseases. The best approach to address this issue is to create glandless seed and glanded plant cotton. A breakthrough in this field would realise the fulfilment of making cotton both a fiber and a food crop, which would be a feat of great magnitude for sustainable development of agriculture. Research on the relationship between glands and their secondary inclusions at the molecular level would be one approach for genetic engineering to control the glands and gossypol content. In this article, we review recent progress on glands and gossypol content for diverse gland types in Gossypium species, inheritance of glands and gossypol content, traditional breeding of glandless seeds and glanded plant cotton, the terpenoid aldehyde biosynthesis pathway, molecular cloning of the related genes, the strategy for genetic engineering, and future prospects. cotton / pigment gland / gossypol / inheritance and breeding / gene cloning and genetic engineering
A group of 133 isolates of the cotton wilt pathogen Fusarium oxysporum Schlecht f sp vasinfectum (Atk) Sny & Hans, representing five races and 20 vegetative compatibility groups within race 1 were used to determine the identity, biosynthetic regulation and taxonomic distribution of polyketide toxins produced by this pathogen. All isolates of F oxysporum f sp vasinfectum produced and secreted the nonaketide naphthazarin quinones, bikaverin and norbikaverin. Most isolates of race 1 (previously denoted as races 1, 2 and 6; and also called race A) also synthesized the heptaketide naphthoquinones, nectriafurone, anhydrofusarubin lactol and 5-O-methyljavanicin. Nine avirulent isolates of F oxysporum from Upland cotton roots, three isolates of race 3 of F oxysporum f sp vasinfectum, and four isolates of F oxysporum f sp vasinfectum from Australia, all of which previously failed to cause disease of Upland cotton (Gossypium hirsutum L) in stem-puncture assays, also failed to synthesize or secrete more than trace amounts of the heptaketide compounds. These results indicate that the heptaketides may have a unique role in the virulence of race 1 to Upland cotton. The synthesis of all polyketide toxins by ATCC isolate 24908 of F oxysporum f sp vasinfectum was regulated by pH, carbon/nitrogen ratios, and availability of calcium in media. Synthesis was greatest below pH 7.0 and increased progressively as carbon/nitrogen ratios were increased by decreasing the amounts of nitrogen added to media. The nonaketides were the major polyketides accumulated in synthetic media at pH 4.5 and below, whereas the heptaketides were predominant at pH 5.0 and above. The heptaketides were the major polyketides formed when 10 F oxysporum f sp vasinfectum race 1 isolates were grown on sterilized stems of Fusarium wilt-susceptible cotton cultivars, but these compounds were not produced on sorghum grain cultures. Both groups of polyketide toxins were apparently secreted by F oxysporum f sp vasinfectum, since half of the toxin in 2-day-old shake culture was present in the supernatant. Secretion was enhanced by calcium. Glutamine and glutamic acid inhibited both nonaketide and heptaketide syntheses, even at low nitrogen
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.