The piezoelectric flextensional actuator investigated in this paper comprises three pre-stressed piezoceramic lead zirconate titanate (PZT) stacks and an external, flexure-hinged, mechanical amplifier configuration. An electromechanical model is used to relate the electrical and mechanical domains, comprising the PZT stacks and the flexure mechanism, with the dynamic characteristics of the latter represented by a multiple degree-of-freedom dynamic model. The Maxwell resistive capacitive model is used to describe the nonlinear relationship between charge and voltage within the PZT stacks. The actuator model parameters and the electromechanical couplings of the PZT stacks, which describe the energy transfer between the electrical and mechanical domains, are experimentally identified without disassembling the embedded piezoceramic stacks. To verify the electromechanical model, displacement and frequency experiments are performed. There was good agreement between modelled and experimental results, with less than 1.5% displacement error. This work outlines a general process by which other pre-stressed piezoelectric flextensional actuators can be characterized, modelled and identified in a non-destructive way.
A new method, a 3D printing technique, in particular, selective laser melting (SLM), has been used to fabricate moulds for the injection moulding of thermoplastic microfluidic chips that are suitable for prototyping and early stage scale-up. The micro metallic patterns are printed on to a pre-finished substrate to form a microstructured mould. The dimensional accuracy, surface morphology, bonding strength between the printed patterns and substrate, as well as the microstructure of micro features were all characterized. A microfluidic mould was successfully printed and used directly for injection moulding of cyclic olefin copolymer (COC) microfluidic chips, which were used subsequently to successfully monitor nitrite concentrations in environmental water. The characterization indicated that this new process can be used for fast fabrication of mould tools for injection moulding/hot embossing microfluidic devices. It is faster, more flexible and less expensive than conventional micro-machining processes, although the accuracy and finish are still needed to improve though process optimization and hybrid SLM and machining processes.
With the use of ultrasonic-assisted diamond cutting, an optical surface finish can be achieved on hardened steel or even brittle materials such as glass and infrared materials. The proposed ultrasonic vibration cutting system includes an ultrasonic generator, horn, transducer, cutting tool and the fixture. This study is focused on the design of the ultrasonic vibration cutting system with a high vibration frequency and an optimized amplitude for hard and brittle materials, particularly for moulded steel. A two-dimensional vibration design is developed by means of the finite element analysis (FEA) model. A prototype of the system is manufactured for the test bench. An elliptical trajectory is created from this vibration system with amplitudes of micrometers in two directions. The optimization strategy is presented for the application development.
The water and sediment regimes of the Yellow River are the basis of decision-making of major projects of the Yellow River. Based on the water and sediment data at the Huayuankou station, Gaocun station, Aishan station, Lijin station in the lower reach of the Yellow River, the Mann-Kendall test, the T-test for differences, wavelet analysis, slope change ratio method and the double cumulative curve method were applied to analyze the runoff and sediment regimes alteration. The results show that the water and sediment of the lower Yellow River have a significant downward trend, and the annual sediment decreases significantly compared with the annual runoff. The annual runoff and sediment of the four hydrological stations changed around the 1980 and 1990s, respectively. The water and sediment of hydrological stations have periodic variations on multiple time scales, but the variation scales are different. Precipitation, human activities and other factors lead to the decrease trend of water and sediment in the lower Yellow River, and their contribution rates to the change of water and sediment are also different. Precipitation contributed 0.15%–8.71% and 0.06%–22.32% to the reduction of runoff and sediment load at hydrological stations, while human activities contributed 91.29%–99.85% and 77.68%–102.21% to the reduction of runoff and sediment load, respectively. Human activity is the main factor of runoff and sediment reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.