Place recognition is a challenging problem in mobile robotics, especially in unstructured environments or under viewpoint and illumination changes. Most LiDAR-based methods rely on geometrical features to overcome such challenges, as generally scene geometry is invariant to these changes, but tend to affect camera-based solutions significantly. Compared to cameras, however, LiDARs lack the strong and descriptive appearance information that imaging can provide.To combine the benefits of geometry and appearance, we propose coupling the conventional geometric information from the LiDAR with its calibrated intensity return. This strategy extracts extremely useful information in the form of a new descriptor design, coined ISHOT, outperforming popular state-ofart geometric-only descriptors by significant margin in our local descriptor evaluation. To complete the framework, we furthermore develop a probabilistic keypoint voting place recognition algorithm, leveraging the new descriptor and yielding sublinear place recognition performance. The efficacy of our approach is validated in challenging global localization experiments in large-scale built-up and unstructured environments. †
Predicting the price movement of finance securities like stocks is an important but challenging task, due to the uncertainty of financial markets. In this paper, we propose a novel approach based on the Transformer to tackle the stock movement prediction task. Furthermore, we present several enhancements for the proposed basic Transformer. Firstly, we propose a Multi-Scale Gaussian Prior to enhance the locality of Transformer. Secondly, we develop an Orthogonal Regularization to avoid learning redundant heads in the multi-head self-attention mechanism. Thirdly, we design a Trading Gap Splitter for Transformer to learn hierarchical features of high-frequency finance data. Compared with other popular recurrent neural networks such as LSTM, the proposed method has the advantage to mine extremely long-term dependencies from financial time series. Experimental results show our proposed models outperform several competitive methods in stock price prediction tasks for the NASDAQ exchange market and the China A-shares market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.