Strong coupling between two resonance modes leads to the formation of new hybrid modes exhibiting disparate characteristics owing to the reversible exchange of information between different uncoupled modes. Here, we realize the strong coupling between the localized surface plasmon resonance and surface plasmon polariton Bloch wave using multilayer nanostructures. An anticrossing behavior with a splitting energy of 144 meV can be observed from the far-field spectra. More importantly, we investigate the near-field properties in both the frequency and time domains using photoemission electron microscopy. In the frequency domain, the near-field spectra visually demonstrate normal-mode splitting and display the extent of coupling. Importantly, the variation of the dephasing time of the hybrid modes against the detuning is observed directly in the time domain. These findings signify the evolution of the dissipation and the exchange of information in plasmonic strong coupling systems and pave the way to manipulate the dephasing time of plasmon modes, which can benefit many applications of plasmonics.
We theoretically realize the Fano resonance with a high quality factor of 10 using a structure, which is constructed from three one-dimensional photonic crystals and a defect layer. The emerged Fano resonance can be attributed to the weak coupling between a Fabry-Perot cavity mode and a topological edge state mode provided by the topological photonic crystal heterostructure. Moreover, we experimentally reproduce this Fano resonance in the optical communication range with a high quality of 10. This may be useful reference for the study of applications of photonic topological states in integrated photonic devices and information processing chips.
We investigate the superposition properties of the dipole and quadrupole plasmon modes in the near field both experimentally, by using photoemission electron microscopy (PEEM), and theoretically. In particular, the asymmetric near-field distributions on gold (Au) nanodisks and nanoblocks under oblique incidence with different polarizations are investigated in detail. The results of PEEM measurements show that the evolutions of the asymmetric near-field distributions are different between the excitation with s-polarized and p-polarized light. The experimental results can be reproduced very well by numerical simulations and interpreted as the superposition of the dipole and quadrupole modes with the help of analytic calculations. Moreover, we hypothesize that the electrons collected by PEEM are mainly from the plasmonic hot spots located at the plane in the interface between the Au particles and the substrate in the PEEM experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.