In this paper, we introduce autoencoder ensembles for unsupervised outlier detection. One problem with neural networks is that they are sensitive to noise and often require large data sets to work robustly, while increasing data size makes them slow. As a result, there are only a few existing works in the literature on the use of neural networks in outlier detection. This paper shows that neural networks can be a very competitive technique to other existing methods. The basic idea is to randomly vary on the connectivity architecture of the autoencoder to obtain significantly better performance. Furthermore, we combine this technique with an adaptive sampling method to make our approach more efficient and effective. Experimental results comparing the proposed approach with state-of-theart detectors are presented on several benchmark data sets showing the accuracy of our approach.
Significance This paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the United States. Results show high variation in accuracy between and within stand-alone models and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public-health action.
We propose a new epidemic model (SuEIR) for forecasting the spread of COVID-19, including numbers of confirmed and fatality cases at national and state levels in the United States. Specifically, the SuEIR model is a variant of the SEIR model by taking into account the untested/unreported cases of COVID-19, and trained by machine learning algorithms based on the reported historical data. Besides providing basic projections for confirmed and fatality cases, the proposed SuEIR model is also able to predict the peak date of active cases, and estimate the basic reproduction number (R0). In particular, the forecasts based on our model suggest that the peak date of the US, New York state, and California state are 06/01/2020, 05/10/2020, and 07/01/2020 respectively. In addition, the estimated R0 of the US, New York state, and California state are 2.5, 3.6 and 2.2 respectively. The prediction results for all states in the US can be found on our project website: https://covid19.uclaml.org, which are updated on a weekly basis, and have been adopted by the Centers for Disease Control and Prevention (CDC) for COVID-19 death forecasts (https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html).
Disease modelling has had considerable policy impact during the ongoing COVID-19 pandemic, and it is increasingly acknowledged that combining multiple models can improve the reliability of outputs. Here we report insights from ten weeks of collaborative short-term forecasting of COVID-19 in Germany and Poland (12 October–19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.
Deep neural networks are vulnerable to adversarial attacks. Among different attack settings, the most challenging yet the most practical one is the hard-label setting where the attacker only has access to the hard-label output (prediction label) of the target model. Previous attempts are neither effective enough in terms of attack success rate nor efficient enough in terms of query complexity under the widely used ∞ norm threat model. In this paper, we present the Ray Searching attack (RayS), which greatly improves the hard-label attack effectiveness as well as efficiency. Unlike previous works, we reformulate the continuous problem of finding the closest decision boundary into a discrete problem that does not require any zeroth-order gradient estimation. In the meantime, all unnecessary searches are eliminated via a fast check step. This significantly reduces the number of queries needed for our hard-label attack. Moreover, interestingly, we found that the proposed RayS attack can also be used as a sanity check for possible "falsely robust" models. On several recently proposed defenses that claim to achieve the state-of-the-art robust accuracy, our attack method demonstrates that the current white-box/black-box attacks could still give a false sense of security and the robust accuracy drop between the most popular PGD attack and RayS attack could be as large as 28%. We believe that our proposed RayS attack could help identify falsely robust models that beat most white-box/black-box attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.