BackgroundSynergistic therapy of tumor is a promising way in curing cancer and in order to achieve effective tumor therapy with real-time drug release monitoring, dynamic cellular imaging and antitumor activity.ResultsIn this work, a polymeric nanoparticle with Forster resonance energy transfer (FRET) effect and chemo-photodynamic properties was fabricated as the drug vehicle. An amphiphilic polymer of cyclo(RGDfCSH) (cRGD)-poly(ethylene glycol) (PEG)-Poly(l-histidine) (PH)-poly(ε-caprolactone) (PCL)-Protoporphyrin (Por)-acting as both a photosensitizer for photodynamic therapy (PDT) and absorption of acceptor in FRET was synthesized and self-assembled into polymeric nanoparticles with epirubicin (EPI)-acting as an antitumor drug for chemotherapy and fluorescence of donor in FRET. Spherical EPI-loaded nanoparticles with the average size of 150 ± 2.4 nm was procured with negatively charged surface, pH sensitivity and high drug loading content (14.9 ± 1.5%). The cellular uptake of EPI-loaded cRGD-PEG-PH-PCL-Por was monitored in real time by the FRET effect between EPI and cRGD-PEG-PH-PCL-Por. The polymeric nanoparticles combined PDT and chemotherapy showed significant anticancer activity both in vitro (IC50 = 0.47 μg/mL) and better therapeutic efficacy than that of free EPI in vivo.ConclusionsThis work provided a versatile strategy to fabricate nanoassemblies for intracellular tracking of drug release and synergistic chemo-photodynamic therapy.
Abstract:The vegetation response to climatic factors is a hot topic in global change research. However, research on vegetation in Shule River Basin, which is a typical arid region in northwest China, is still limited, especially at micro scale. On the basis of Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data and daily meteorological data, employing panel data models and other mathematical models, the aim of this paper is to reveal the interactive relationship between vegetation variation and climatic factors in Shule River Basin. Results show that there is a widespread greening trend in the whole basin during 2000-2015, and 80.28% of greening areas (areas with vegetation improvement) are distributed over upstream region, but the maximum vegetation variation appears in downstream area. The effects of climate change on NDVI lag about half to one month. The parameters estimated using panel data models indicate that precipitation and accumulated temperature have positive contribution to NDVI. With every 1-mm increase in rainfall, NDVI increases by around 0.223‰ in upstream area and 0.6‰ in downstream area. With every 1-• C increase in accumulated temperature, NDVI increases by around 0.241‰ in upstream area and 0.174‰ in downstream area. Responses of NDVI to climatic factors are more sensitive when these factors are limiting than when they are not limiting. NDVI variation has performance in two seasonal and inter-annual directions, and the range of seasonal change is far more than that of inter-annual change. The inverted U-shaped curve of the variable intercepts reflects the seasonal change. Our results might provide some scientific basis for the comprehensive basin management.
Oases support human activities in arid and semiarid regions, and their stability is important for regional sustainable development and water resource management. Water consumption is the major factor affecting the stability of oases. On the basis of remote sensing images, evaporation and socioeconomic data, this study first evaluates the stability of the Dunhuang Oasis against the expansion of an oasis irrigation district and planting structure changes from 1987 to 2015. Next, it calculates a suitable area of the oasis irrigation district using water–energy balance theory. The results are as follows: (1) During the 1987–2015 period, with the expansion in the oasis irrigation area, the planting structure underwent a marked transformation from food crops to cash crops to orchards. Water consumption pattern likewise changed considerably. (2) The stability of the Dunhuang Oasis continued to weaken from 0.54 in 1987 until it reached a dangerously unstable level of 0.17 in 2010. With the implementation of water-saving measures and a water-transfer project, the stability of the Dunhuang Oasis irrigation district increased to a metastable level of 0.22 in 2015. (3) Setting the stability are 0.5 of a stable level and 0.75 of an extremely stable level, and the oasis irrigation district should be impractical and reduced by 168 and 241 km2 to attain a suitable oasis ecosystem scale. Hence, at present, the water-transfer project is the most practical way to increase allocated water resource to the oasis irrigation district for improving its stability.
The vegetation response to climatic factors is a hot topic in global change research. With the Support of ArcGIS and ENVI software, six sets of Landsat remote sensing images of the middle and lower reaches of the Shule River Basin were interpreted. Eight types of land use and land covers were obtained and the spatiotemporal characteristics of the land use/land cover changes (LUCCs) were analyzed using an intensity analysis to provide a basis for decision-making on the sustainable development of the basin. In the past 29 years, the area of cropland, construction land and shrubland had a net increase, while high-coverage grassland (HCG), medium-coverage grassland (MCG), low-coverage grassland (LCG), wetland and non-vegetation land all presented a net decrease. The area of artificial vegetation (cropland) presented an expanding trend and increased by 1105.56 km2 in total, while the natural vegetation (grassland, shrubland, wetland) showed a shrinking tendency and decreased by 917.69 km2. The intensity analysis revealed that the rate of LUCC in the period of 2000~2006 and 2006~2010 was relatively higher, although the rate of LUCC in other periods was much lower. The change intensities of MCG and HCG were greatest, followed by LCG, shrubland and wetland. Construction land and cropland were in third place, while non-vegetation land was in last place. The pattern of regional LUCC was generally stable except for cropland loss and the gain/loss change of other land-use/land-cover types was always in an active state. For spatial distribution, few changes were observed in the old irrigated area within the oasis. The LUCC was mainly concentrated in the oasis fringe area, natural vegetation cover area and emigrant arrangement regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.